
TRY, TRY AGAIN

https://flickr.com/photos/volvob12b/53067564580/https://commons.wikimedia.org/wiki/File:Albert_Einstein_1947.jpg
Distributed Systems, Timeouts, and Idempotency

hachyderm.io/@samnewman

Sam Newman

Building
Resilient
Distributed
Systems
Patterns and Practices for Stable Software

https://flickr.com/photos/mn1705/14907413228/

Retries

Idempotency

https://flickr.com/photos/skuds/3781599677/

https://flickr.com/photos/rainchurch/6311895493/

Distributed Systems

Distributed System
A system which consists of two or more computers

connected by networks

https://flickr.com/photos/facing-my-life/3038310109/i

“A distributed system is one in which the failure of
a computer you didn't even know existed can
render your own computer unusable.”

- Leslie Lamport

https://www.theverge.com/news/804289/eight-sleep-smart-bed-aws-outage-overheating-offline

“A distributed system is one in which the failure of
a computer you didn't even know existed can
render your own computer unusable.”

- Leslie Lamport
mattress

https://flickr.com/photos/spilt-milk/357016637/

hachyderm.io/@samnewman

THE THREE GOLDEN RULES OF DISTRIBUTED COMPUTING

1. You can’t beam information between two
points instantly

2. Sometimes, you can’t reach the thing you
want to talk to

3. Resources are not infinite

https://flickr.com/photos/mn1705/14907413228/

Retries

“The definition of insanity is doing the
same thing over and over again and
expecting a different result”

https://commons.wikimedia.org/wiki/File:Albert_Einstein_1947.jpg

hachyderm.io/@samnewman

THE THREE GOLDEN RULES OF DISTRIBUTED COMPUTING

1. You can’t beam information between two
points instantly

2. Sometimes, you can’t reach the thing you
want to talk to

3. Resources are not infinite

Client

Order  
Instance

Order  
Instance

Order  
Instance

Load Balancer

Order Payment

So if the first attempt fails…

It might be worth trying again

How many retries?

hachyderm.io/@samnewman

THE THREE GOLDEN RULES OF DISTRIBUTED COMPUTING

1. You can’t beam information between two
points instantly

2. Sometimes, you can’t reach the thing you
want to talk to

3. Resources are not infinite

PaymentOrder

Retrying too often can
overload a server

Setting a max number of
retries makes sense

And load shedding is a
sensible defence here

https://brooker.co.za/blog/2022/02/16/circuit-breakers.html

https://medium.com/square-corner-blog/incident-summary-2017-03-16-2f65be39297

Is it safe to retry?

PaymentOrder

Pay Sam £100

What happens if we
don’t get a response?

???

Two possibilities…

First Possibility
 The payment wasn’t

carried out

PaymentOrder

Pay Sam £100
We didn’t get the
request!

Or we did, but crashed
during processing…

PaymentOrder

Pay Sam £100

Second Possibility
The payment was performed, but
the response wasn’t processed

https://flickr.com/photos/ftzdomino/6304930642/

PaymentOrder

Pay Sam £100

Pay Sam £100

The new problem? What if that
means Sam gets paid twice?

Idempotency

https://flickr.com/photos/skuds/3781599677/

Idempotent Operation
An operation that can be

applied multiple times without
changing the result

PaymentOrder

Pay Sam £100

Pay Sam £100

This operation is NOT idempotent -
performing the same operation twice

does not give the same result

Idempotency Keys

Server Side Request
Fingerprinting

Idempotency Key
A unique ID used to identify a

specific operation

PaymentOrder

Pay Sam £100
Idempotency Key: 456

Pay Sam £100
Idempotency Key: 456

Payment can now see this payment
has already been made

Key Result

456 200 Success

Processed Payments

What response should be
sent when ignoring the

retried operation?

Send the same (semantic)
response as the original

request would have been sent

PaymentOrder

Pay Sam £100
Idempotency Key: 456

200 Payment
Accepted

200 Payment
Accepted

Could still contain
metadata that varies -
ideally kept in headers

PaymentOrder

Pay Sam £100
Idempotency Key: 456

402 No Money!

402 No Money!

Idempotency Keys IDs require a
change in the client server protocol.
What if that can’t easily be changed?

Server Side Request
Fingerprinting

Generating a fingerprint of the
operation on the server side to

spot duplicate requests

Order Payment

PUT /payment HTTP/1.1
Host: payment.mycompany.com
…

customer-id: 123
payment-amount: 100
current: GBP

Header{
Body{ }= 92a22cca1d3b2…

MD5 Hash

Fingerprint Result

040cfd437… 402 Failed

92a22cca… 200 Success

Processed Payments

http://payment.mycompany.com

PUT /payment HTTP/1.1
Host:
payment.mycompany.com

customer-id: 123
payment-amount: 100
current: GBP
timestamp: 1728468810

PUT /payment HTTP/1.1
Host:
payment.mycompany.com

customer-id: 123
payment-amount: 100
current: GBP
timestamp: 1728468853

MD5 Hash
040cfd437dea56d…

MD5 Hash
997d0bb02e23f2a…

http://payment.mycompany.com
http://payment.mycompany.com

PUT /payment HTTP/1.1
Host: payment.mycompany.com

customer-id: 123
payment-amount: 100
current: GBP

Option 1
Only use part of the request
body for fingerprinting

Option 2
Move fields to the header

PUT /payment HTTP/1.1
Host: payment.mycompany.com

customer-id: 123
payment-amount: 100
current: GBP
timestamp: 1728468810

timestamp: 1728468810

{
timestamp: 1728468810timestamp: 1728468810

http://payment.mycompany.com
http://payment.mycompany.com

Order Payment 92a22cca1d3b2…
MD5 HashPay Sam £100

1 Week later…

Order Payment
Pay Sam £100

92a22cca1d3b2…
MD5 Hash

Identical hashes!

Fingerprint Result Expiry

92a22cca1… Success 12:01:03
997d0bb0… Failed 12:01:17
040cfd437… Success 12:03:45

Getting retention right when using
fingerprints is very important!

https://flickr.com/photos/yusamoilov/13639280834/

Can still be a problem if you want
to do the same thing multiple
times in a short space of time

https://www.flickr.com/photos/ibm_media/33838065805/

If you can change the client-server protocol,
then idempotency keys are the easiest way to
make an operation idempotent

Otherwise consider server side request
fingerprinting, but be aware of the downsides

Using idempotency keys and server side
request fingerprinting together?

Can be useful to catch
client errors

PaymentOrder

Pay Sam £100
Idempotency Key: 456

200 Payment
Accepted

Pay Sam £200
Idempotency Key: 456

Resending “Payment
accepted” here could
confuse the client!

If the server sees a retry with
changing values, sending an
error can be more clear

409 Conflict

Key Fingerprint Result Expiry

456 92a22cca1… Success 12:01:03
789 997d0bb0… Failed 12:01:17
123 040cfd437… Success 12:03:45

Just store the key and the
fingerprint together

So doing the same thing
over and over again might

be sensible…

…but only if you can do
so safely

“The definition of insanity is doing the
same thing over and over again and
expecting a different result”

Einstein didn’t say
this quote

hachyderm.io/@samnewman

THE THREE GOLDEN RULES OF DISTRIBUTED COMPUTING

1. You can’t beam information between two
points instantly

2. Sometimes, you can’t reach the thing you
want to talk to

3. Resources are not infinite

hachyderm.io/@samnewman

If at first you don’t succeed, retrying can
make sense…to a point!

If you do want to retry, making your
operations idempotent is vital

hachyderm.io/@samnewman

NEW BOOK IN EARLY ACCESS!

https://samnewman.io/books/building-resilient-distributed-systems/

Book details and slidesSam Newman

Building
Resilient
Distributed
Systems
Patterns and Practices for Stable Software

