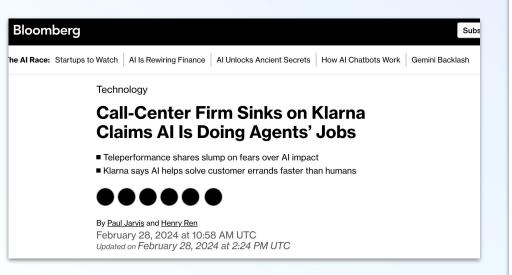
From Evals to Experiments

How to Ship Successful Al Initiatives by Failing Cheaply

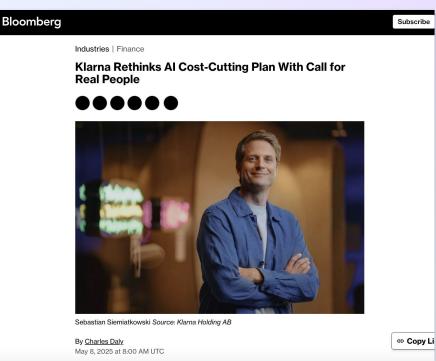
How do you know if your Al initiatives are working?

How quickly do you know if your Al initiatives are working?

Without a plan, initiatives could take months or years to measure



Time to course correct: ~14 months



If we can't fail fast, the cost of failure quickly piles up

Disappointed users and subsequent hit to our reputation

Ceding competitive ground by moving too slowly

Wasted budget on an initiative that didn't work

The hidden **opportunity cost** of not working on something better

Over the last three years, 25% of AI initiatives have delivered expected ROI

Source: IBM CEO Study, 32nd ed. (2025), n = 2,000

A/B tests across disciplines have similar success rates, but only take weeks to measure

Sources: Kohavi, Deng, Vermeer. "A/B Testing Intuition Busters" (2022) Adams and Ou-Yang. "Scaling Experimentation for Machine Learning at Coinbase" (2023)

How do we bring that power of A/B testing to AI initiatives?

From Evals to Experiments

Use Evals to prioritize and tune potential solutions

Use Experiments to prove business impact and make decisions

Use the right tool for the each part of the process

Our ultimate goal is to solve a business problem

<u>Template:</u> We want to build for use case **X**, in order to drive **Y** business outcome

E.g., "We want to build Al-powered customer support agents to drive decreased support costs."

This becomes our *hypothesis*, and we run an experiment to close the feedback loop.

To get there, we need to answer smaller questions about "how"

Evals help guide *how* we approach the build.

- What model(s) will do the best job here?
- · Can we solve this affordably?
- How should our prompts/datasets look?
- How should we set parameters like temperature?

Evals = pre-production "experiments"

Try out multiple combinations of models/parameters

Use fixed inputs in order to compare (e.g. expected, atypical, adversarial)

Conduct error analysis to define failure modes and metrics/evaluators

Look at your evaluators plus metrics like cost, token use, duration

Eval strategy starts with product strategy

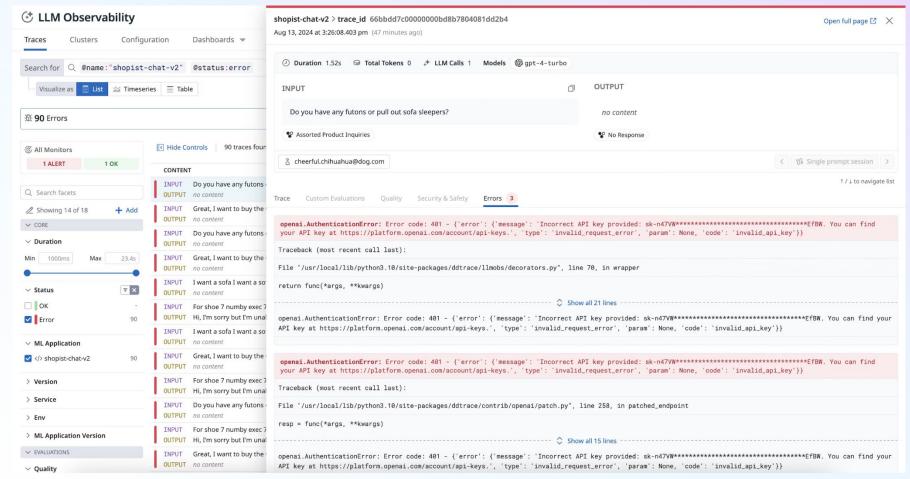
Who are you building for?

What are their **jobs-to-be-done**?

How are they likely to prompt your product?

What about this may evolve over time?

Look at traces to identify and categorize errors



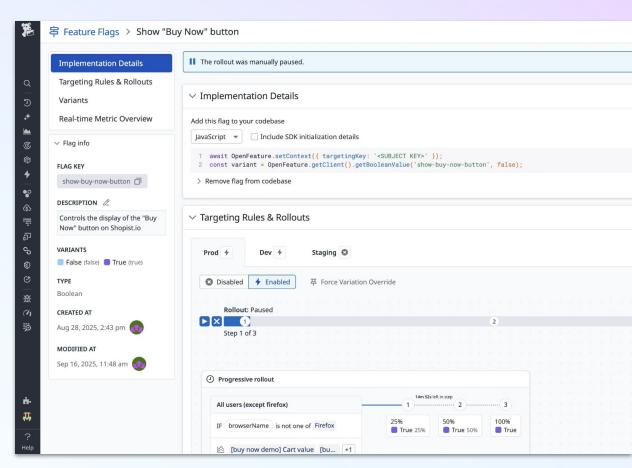
Example: Datadog Feature Flags

Al Feature #1:

Feature flag implementation

Al Feature #2:

Stale flag cleanup



Use errors to craft evaluators

(*not real examples)

Al Feature Flag Creation

Problem: Model is incorrectly implementing

flag

Idea: Did the model read our

documentation?

Problem: Model is writing really inefficient

code or hallucinating

Idea: What was the size of the code change

generated?

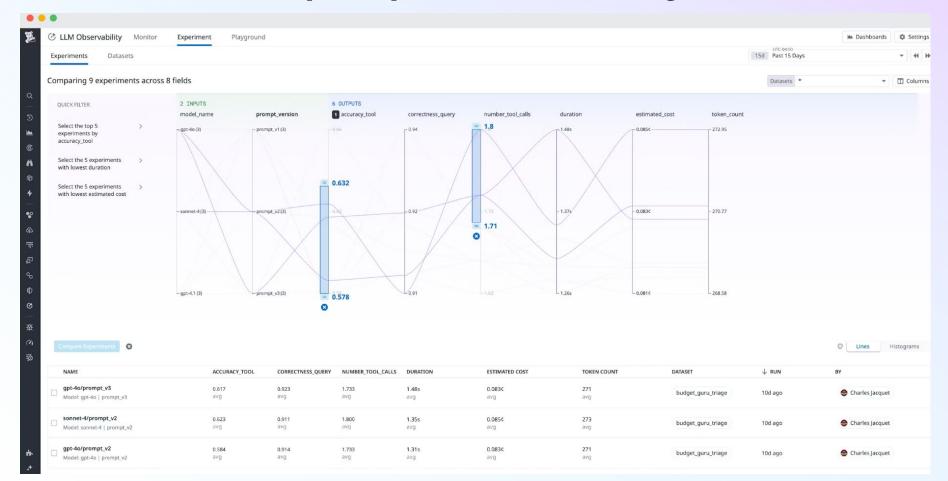
AI Stale Flag Cleanup

Problem: Model does a partial job - correctly removes some code, but leaves some behind

Idea: "LLM as judge" - ask a second LLM to

check the first LLM's work

Use evals to test prompt or model changes



Why aren't pre-prod evals alone sufficient?

may not catch all real cases

Evaluating text output is often **subjective or qualitative**

Pre-prod metrics often fail to correlate to business metrics

Experiments bring AI to the real world

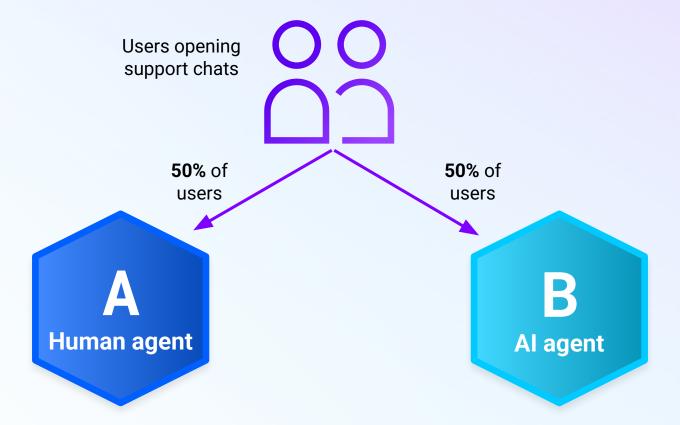
Test our solutions in real-world environments, with real users

Randomized, controlled trials prove what works (causality)

Tie the Al product to business metrics like revenue or cost

Experimenting at scale gives insights in weeks, not quarters

Example: Testing an AI support agent



The building blocks of an experiment plan

Three Types of Experiment Metrics

Primary Metric(s)

Business outcome

- Examples
 - Revenue
 - Completed Transactions
 - Profit Margins
 - Return/Refund rate
 - Value-driving usage (e.g. # of nights booked for a hotel)

Guardrail Metrics

Avoid negative second-order effects

- Examples
 - Repeat purchase revenue
 - Customer LTV
 - Average Order Volume
 - Support Costs
 - Error rates

Storytelling Metrics

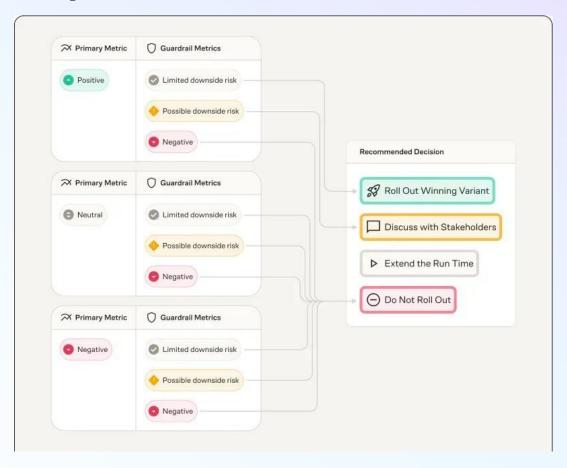
Fuel further hypotheses and future exploration

- Examples
 - Time to ticket resolution
 - Customer satisfaction
 - Latency / performance
 - · Time on site

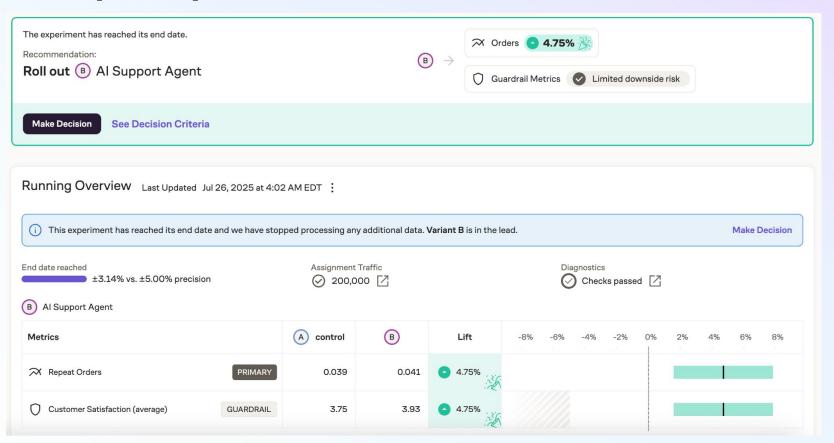
Transactional

Event Stream

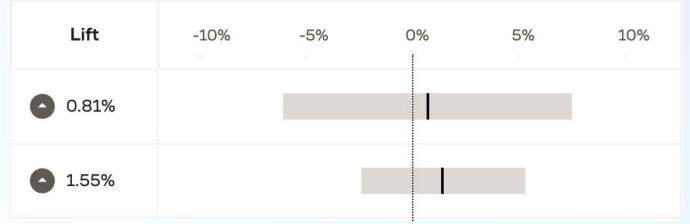
One more step: make decisions in advance



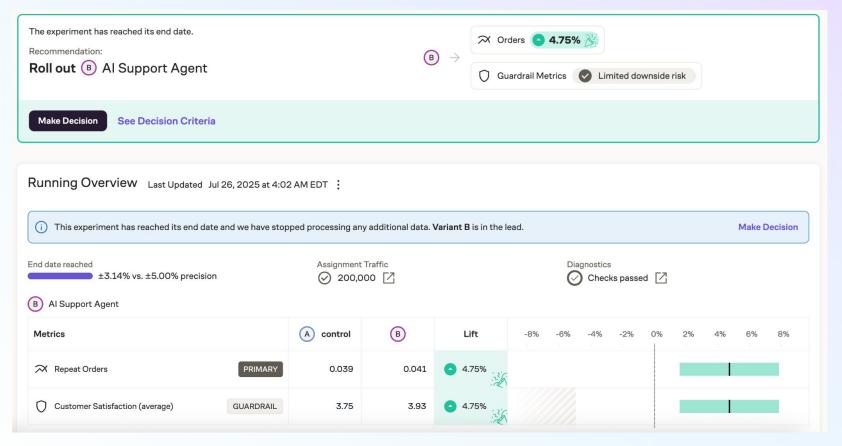
Example experiment results



Stats hack: look at confidence intervals



Output: Confident business decisions



Combine Evals + Experiments

Don't fall prey to long feedback loops

Define success metrics as business outcomes

Run A/B tests to go from idea to proof

Thank you!

Ryan Lucht ryan.lucht@datadoghq.com linkedin.com/in/ryanlucht

