
Build Bravely:
Delivering Risky Projects

Akshay Shah
Oct. 15, 2025

antithesis.com

Who am I?
I’m a grumpy infra engineer,

mostly at startups,
some of which succeeded.

I’ve spent most of that time
fire-fighting in production.

I am not usually brave.

Gradual improvement is safe.

But requirements change.
The business grows.

The unexpected arrives.

Sometimes, we must build
something wholly new.

Something risky.

Something brave.

Plan
As a wizard, I want autonomous

defenders so that my lab stays safe.

prototype ready: Feb
begin pilot: Mar

expand pilot: Apr
full deployment: May

staff promo: Jun

Request for Discussion
To support the lab’s exponential
growth with sub-linear defense
investment…automatons will
self-organize with a SWIM-inspired
gossip protocol…unified Zig, wasm,
& SvelteKit platform. We will
recruit design partners in phases…

focused on why ,

how and when

Disaster!
The project ships,

late,
fulfilling only some of its goals,

after half the team has quit.

And then the robot
murders all of us.

Ambitious, risky projects are
expeditions into the unknown.

Sure, plan a route & itinerary.
Follow all the best practices.

Describe the
destination.

Test
Given a bot in a lab,
When the wizard says, “Defend me,”
Then the bot doesn’t murder the
wizard.

Test
Given two bots in a forest,
When a wizard says, “Fetch coffee,”
Then the bots don’t murder the
wizard.

A suite of tests
Given…when…then… Given…when…then…
Given…when…then… Given…when…then…
Given…when…then… Given…when…then…
Given…when…then… Given…when…then…
Given…when…then… Given…when…then…
Given…when…then… Given…when…then…
Given…when…then… Given…when…then…
Given…when…then… Given…when…then…
Given…when…then… Given…when…then…
Given…when…then… Given…when…then…
Given…when…then… Given…when…then…

… …

This is tedious, heavyweight,
& implicit.

Test
Given a bot in a lab,
When the wizard says, “Defend me,”
Then the bot doesn’t murder the
wizard.

too much
detail!

Property
Given any number of bots anywhere,
When any wizard says any phrase,
Then the bots must not murder the
wizard(s).

states the

general rule

explicitly

Property
Given any number of bots anywhere,
When any wizard says any phrase,
Then the bots:
 must not murder the wizard(s).
 must not self-destruct.
 should attack any enemies.
 may do lab chores.

easily
extensible

The key words “MUST”, “MUST
NOT”, “REQUIRED”, “SHALL”,
“SHALL NOT”, “SHOULD”,
“SHOULD NOT”,
“RECOMMENDED”, “MAY”,
and “OPTIONAL” in this document
are to be interpreted as described in
RFC 2119.

negotiate

trade-offs
and

priorities
early

Property-Based Testing
Haskell: QuickCheck

Property-Based Testing
Haskell: QuickCheck
Python: hypothesis
Typescript: fast-check
Go: rapid
Rust: proptest
Java: JUnit-Quickcheck, jqwik

and many
more!

Property-based testing
Describe correct behavior with properties.

Simulate thousands of worlds.
Check properties in each.

Evolve code safely.
With LLMs.

Thanks
Akshay Shah

antithesis.com

Office hours 4–4:30 today,
table talk 12:30-1 tomorrow.

Thanks to Gemini for images,
to Scott Bradner for RFC 2119,

to every QuickCheck contributor,
& to Savitha Ravi & Michael Coblenz for

“An Empirical Evaluation of
Property-Based Testing in Python.”

