Al-Accelerated Migrations

Charles Covey-Brandt, Developer Platform, Airbnb

Quick story:

3,400 files need migration
Blocking major library update
Last, hardest files to migrate

Est. 1.5 dev years
to complete

For each of the 3.4k files:
1. Understand business context
Understand test intent

Rewrite entire file to new library

> W N

Maintain coverage and intent

Commit 1.5+ dev years?

Try Al 2

Try Al ;4!

4 dev weeks to
complete

+ 2 more for code review

Since then, with Al:

12 more migrations
MM lines of code
/+ dev years saved
Just getting started

" But how?

e Four techniques
e And a framework

1 Programmatic validation
outside scope of the Al

Validation outside Al scope

Programmatic &

idempotent
Always runs after the Al

transform is complete

Migration specific

ai-agent -p "Follow ${INSTRUCTIONS} for ${TARGET}"

./validate-migration $TARGET

bazel test ...

#2 Script transform & validate as loop

Start

v The validate / transform loop
e Starts with validation
validate e Altransform when validate fails
\ e Fail on max attempts
Success? Fail? e Enables:
/ e Pause/resume
Yoy done! e Brute force retries

Tronsform

Start

v The validate / transform loop
e Starts with validation
validate e Altransform when validate fails
\ e Fail on max attempts
Success? Fail? e Enables:
/ e Pause/resume
Yoy done! e Brute force retries

Tronsform

S ./run-migration STARGET

let maxAttempts = 5;
> (true) {
const { error } = await validateTarget(target);

('error) {
// validation succeeded, we're done!
return { success: true };

if (maxAttempts === 0) {
// max attempts hit, this run failed
return { success: false };

const prompt = getPrompt(target, error);
wait spawn(ai-agent —-prompt=${prompt}’);
maxAttempts = maxAttempts 1z

}

3 Design for concurrency

Migration Targets Queue

|

Worker
Pool

Workers 1, 2, 3...

y

Validate/Transform Loop

|

Success Failure

y \

Processed Target Failed Target

Code groups = targets

Targets could be files, folders, bazel targets

Loop runs concurrently for each target

S ./run-migration-all

run(targets, async (target) => {
T At mavAddamnt~
lot—masdiiamntc S
const { error } validateTarget(target);
(lerror) {
[success: true };
}
(maxAttempts) {
success: false };
¥

const prompt = getPrompt(target, error);
spawn(ai-agent ——prompt=${prompt}’);
maxAttempts = maxAttempts I

}, { concurrency: 50 });

4 “Sample, tune, sweep”

“Sample, tune, sweep”

Fast, breadth-first execution:

1.

2
3.
4

Select (random) sample of targets
Tune prompts so selections pass*
Sweep across all targets

Bank passes, repeat on remaining

*The final version of your migration script (when you’re

done with the migration) will be overfitted for the

toughest targets in your migration

‘ta\rgets remaining

“Sample, tune, sweep”

/\ Sweep 1— #5%
success rate!
1. Faster tuning feedback loop
Sweep 2 — 72% 2. Avoids overfitting
3. Getsustothe long tail faster
3.4k
files
ete ete
/ Long ‘ta?l, manual
250 intervention needed
Ples /—==\
' ! =
*Enzyme migra‘tion q Weeks /

Al Migration Framework

e Codifies best practices
e Enables self-serve

Defining targets

findTargets: {

select: 'frontend/xx/x.test.{ts,tsx}"',

filter: ({ content }) => content.includes('enzyme'),
}I

Loop definition

createStep ({
name: 'remove-enzyme',
validate: async ({ content }) => {

(content.includes("from ‘enzyme'")) {
return { error: 'Enzyme still imported in file' };
b
i
transform: new CodingAgentTransformer((target) => {
1
The file ${target} is using enzyme and we need to
rewrite it to use react testing library.

To do this ...
Here is more context that will help you ...
h
bl
H;

CLI execution

./migrate run enzyme-to-rtl.ts —--random=5
./migrate run enzyme-to-rtl.ts —--status=failed
./migrate run enzyme-to-rtl.ts # run a sweep

With or without a framework:

1. Idempotent'/validation, outside of the Al

Script the validate / transform loop

Design targets for concurrency

W N

Execute w/ “Sample, tune, sweep”

Thank you!

(and ask me about Al accelerated migrations)

