
3 WAYS TO
SABOTAGE
YOUR CODE WITH AI
Analyzing 100m+ changed lines & 30m dev-years between
2022 and 2025: Where do good intentions go awry?

Research

Subjective “Data” About AI Impact Quantitative Data About AI Impact

“I’d say maybe 30% of the code that is inside of our repos
today is probably all written by software.” -Satya Nadella,

CEO, Microsoft

“Computer programmers are now 10× more productive with
AI assistance.” -Sam Altman, CEO, OpenAI

“AI could be writing 90% of software code within 3–6
months.” -Dario Amodei, CEO, Anthropic

116 million durable line changes and 29 million
developer-years over 4 years, analyzed to help decision-making.

Data sources: Google, Meta, Amazon, Rappi, other
small-to-midsize companies

Fight Hype with Measurement

At least they tried to quantify

AI Data Sources 📚

AI Adoption by Year

Source: Stack Overflow Developer Surveys, 2023-2025

ChatGPT launched Nov 20222022

2023

2024

2025

44% use or plan to use

62% use or plan to use

51% use daily

A hybrid of GitHub & GitClear data tables were used to discover multi-year trends that follow the rate of AI adoption.
Amount of AI Adoption by year is gathered from Stack Overflow & JetBrains Survey results.
New, directly measured, data from AI provider APIs is also being collected as of this quarter, creating new research possibilities.

84% use or plan to use

● Lines
copy/pasted,
moved

● Duplication
frequency

● Durable change
velocity

● Per-team AI
suggestion counts

● Per-team AI
approval counts

● AI usage per IDE
& language

● Commit
Count

● Lines
Added,
Deleted

Direct correlation data becoming available:
https://www.gitclear.com/ai_correlation

116 million durable line
changes

29 million developer years of
Commit history

v

Represented by Churn, Dupe Code Blocks, and Move/Refactor ActivityCode Quality & Durability

Represented by Review Count, Review Hours and Comment CountCode Review Burden

As represented by Commit Count, Diff Delta, and Issues ResolvedVelocity

Quantifiable Correlation: Examples
What can we quantify about AI performance, quality & overall impact?

Observed increases from 5-45%

Observed increases from 10-20%

Churn up by 50%, Duplication up by 80%, Refactor down by 50%

To reap the maximum reward, start by understanding where AI can be applied with minimal developer pushback.
I’ll show how to create AI advocates within your organization.

SABOTAGE #1 Sit out the revolution

But what does it mean that the biggest spike is “lines added”?

2025’s AI is far from perfect. But the biggest
mistake is to sacrifice “good” to await
“perfect.” Almost every relevant metric confirms
at least a few percentage points of productivity
gain available.

70,000 Developer-Years of GitHub Data

– Sundar Pichai, Google CEO, Lex Fridman Podcast

“But the most important metric, and we
carefully measure it is, like, how much
has our engineering velocity increased as
a company due to AI, right? It’s tough
measure, and we rigorously try to
measure it, and our estimates are that
number is now at 10%”

Full study: https://www.gitclear.com/research/ai_tool_impact_on_developer_productive_output_from_2022_to_2025

🡖

SABOTAGE #2 Mistaking “More Code” as “More Productivity”

● A client was told by AI
Sales that “other
clients were seeing
2-5x gains.”

● And that’s why “what
you measure” matters:

Cost of generated code: More copy/paste, paired w/ Less reuse

Every line added is a contract to maintain code in perpetuity –
and the cost of maintaining copy/pasta is high

Change Type 2022 2025

Added line 40.9% 44.3%

Deleted line 19.9% 21.5%

Updated line 5.2% 6.1%

Move/refactor line 20.6% 6.9%

Copy/paste (dupe) line 9.6% 16.9%

Find/replace line 4.0% 4.3%

Churn 3.3% 5.1%

Is DRY Code Dead?

As a Developer, is there any worse
feeling than making swift progress on a
ticket, then realizing there are two or
three similar methods to choose from?

And if so, what are we losing?

Should I be a good citizen and consolidate
or document these for future devs?

NOT cool

Which of the methods do you choose to use?

Why do more than one of these similar
methods exist? Am I missing something?

Questions Abound:

🡖

Sabotage #3 The “Willpower Drain” of Code Review
Case Study: Human-Coded vs Copilot Agent PR

Human coded: In JetBrains IDE: 60 mins to develop, 30 mins to test API integration

AI Agent Coded: Over 4 review passes, 90 minutes to generate equivalent code

Pull Request
Review Minutes

Year Review
Minutes

2022 33.5

2023 34.9

2024 40.7

2025 41.0

Source: GitClear Industry Stats

https://docs.google.com/file/d/1rmDxwQG11ELvRkRocbe4mF0JslUXyl4X/preview

“
USING DATA TO BUILD INTUITION

Sidestepping SABOTAGE:
Heuristics to Consider

Evaluating a story? What are the
numbers?

If Google's CEO admits that the net AI
productivity impact is on the order of
~10% in 2025… believe him.

If someone is selling you a 3x gain from
AI, it’s probably a gain in tech debt.

Proposed Heuristic

Proposed Heuristic

Proposed Heuristic

TAKEAWAYS PROJECT-SPECIFIC ACTIONS TO CONSIDER

ACTIONABLE IDEAS TO APPLY
Developers loathe hype cycles. Win them over with measurement, transparency, and successful examples.

2. Prove the
Benefits 🕵

Developers are
instinctively skeptical.
Earn their respect with
transparent data showing
measurable AI upside.

3. Champion Top
Cohorts 📢

Measure which team
members have used AI
best, and help them teach
their tools & methods.

4. Set Realistic
Goals 📈

Pick metrics that align
with team success, and
share data on how AI use
is helping realize goals.

1. Acknowledge
the Risks 👀

Your own “move” and
“copy/paste” data can
prove that AI adoption
remains a net benefit to
long-term maintainability.

New AI API data released daily:
https://www.gitclear.com/ai_correlation

