GitClear Research

3WAYS TO
YOUR CODE WITH Al

Analyzing 100m+ changed lines & 30m dev-years between
2022 and 2025: Where do good intentions go awry?

with Measurement

Quantitative Data About Al Impac
Changes Analyzed by Year

50,000,000
40,000,000
30,000,000
20,000,000
10,000,000

0
2023 2024

Committers years measured
~ Durable line changes measured

116 million durable line changes and 29 million
developer-years over 4 years, analyzed to help decision-making.
Data sources: Google, Meta, Amazon, Rappi, other
small-to-midsize companies

Al Data Sources &

A hybrid of GitHub & GitClear data tables were used to discover multi-year trends that follow the rate of Al adoption.
Amount of Al Adoption by year is gathered from Stack Overflow & JetBrains Survey results.
New, directly measured, data from Al provider APIs is also being collected as of this quarter, creating new research possibilities.

Al Adoption by Year

oo @GitClear

) GitHub

: ® Lines

e Perteam Al q (2022) @ ChaiGPT launched Nov 2022

suggestion counts copy/pasted,
e Perteam Al mOVG.CI . (2023) @D 4 4% use or plan to use

approval counts e Duplication
o Al usage per IDE frequency (2024) @@ 62% use or plan to use

& language e Durable change

loci G) 51% use daily
velocity C 2025
C D) 84% use or plan to use

29 million developer years of
Commit history

116 million durable line
changes

Direct correlation data becoming available:

hﬂ-gs f!www_g“-clear.com fai Correlaﬁon Source: Stack Overflow DeVelOper SUrVeyS, 2023-2025

Quantifiable Correlation: Examples

What can we quantify about Al performance, quality & overall impact?

. As represented by Commit Count, Diff Delta, and Issues Resolved
Velocity
Observed increases from 5-45%
4 Code Review Burden Represented by Review Count, Review Hours and Comment Count
Observed increases from 10-20%

Code Quality & Durability Represented by Churn, Dupe Code Blocks, and Move/Refactor Activity
Churn up by 50%, Duplication up by 80%, Refactor down by 50%

To reap the maximum reward, start by understanding where Al can be applied with minimal developer pushback.
I'll show how to create Al advocates within your organization.

SABOTAGE #1

2025's Al is far from perfect. But the biggest
mistake is to sacrifice “good” to await
“perfect.” Almost every relevant metric confirms
at least a few percentage points of productivity
gain available.

“But the most important metric, and we
carefully measure it is, like, how much
has our engineering velocity increased as
a company due to Al, right? It's tough
measure, and we rigorously try to
measure it, and our estimates are that
number is now at 10%”

— Sundar Pichai, Google CEO, Lex Fridman Podcast

But what does it mean that the biggest spike is “lines added”?

Median & Average Commit Count Chamge ws 2022

o, 284
® Median ComMRURIUSOBMIL Y COANRIRISLRCMIVERSEY Lines Added
70,000 Developer-Years of GitHub Data

Full study: https://www.gitclear.com/research/ai_tool_impact_on_developer_productive_output_from_2022_to_2025

Mistaking “More Code” as “More Productivity”

Cost of generated code: More copy/paste, paired w/ Less reuse
50.00%

40.00%

30.00%

20.00%

10.00%

m——

0.00%
2022 2023 2024 2025

= Added = Deleted == Updated ® Moved @ Copy/pasted = Find/replaced == Churn

Every line added is a contract to maintain code in perpetuity —
and the cost of maintaining copy/pasta is high

s DRY Code Dead?

And if so, what are we losing?

As a Developer, is there any worse
feeling than making swift progress on a
ticket, then realizing there are two or
three similar methods to choose from?

l Questions Abound:
Which of the methods do you choose to use?
Why do more than one of these similar

methods exist? Am | missing something?

Should | be a good citizen and consolidate
or document these for future devs?

Refactor (Moved) vs Copy/Paste (Duplicate)

® Moved = Copy/pasted

25.00%

NOT cool

15.00%

¢
20.00%

N

10.00% —[em—

5.00%

/
=t

0.00%

2022

2023

2024

2025

Sabotage #3 The “Willpower Drain” of Code Review

Pull Request
Review Minutes

Year Review
Minutes

2022 33.5

2023 34.9

2024 40.7

2025 41.0

Source: GitClear Industry Stats

Case Study: Human-Coded vs Copilot Agent PR

Name Most Active Contributors Diff Delta Estimated Time Spent Delta Velocity @

« Selected path:root / > vendor > gems > llm_metrics > app > lib >
external_usage_client

Lines of code: 330 in this folder. 330 including subdirectories

Complexity: 1,506 in this folder. 1,506 including subdirectorie:

(o}
[external_anthropic_usage_client.rb (7
[external_cursor_ai_usage_client.rb (2

[external_github_copilot_usage_client.rb 2

[external_open_ai_usage_client.rb (2

Human coded: In JetBrains IDE: 60 mins to develop, 30 mins to test API integration

) Conversation 35 -0- Commits 5 El Checks o0 Files changed &

Copilot Al commented 2 weeks ago - edited ~

Implement basic ExternalAnthropicClaudeUsageClient with token parsing

Add claude_code_analytics provider support to enums and factory methods

Create test coverage with Claude Code API example structure

Enhance client to extract and utilize core_metrics data (lines_of_code added/removed)

Add actor email lookup to set committer_[gj when matching existing committers

Calculate tool_actions statistics for prompted_accepted_count and prompted_request_count
Implement proportional distribution of non-token metrics based on model token usage percentages

Update test coverage to verify all new metrics are properly calculated and populated

Al Agent Coded: Over 4 review passes, 90 minutes to generate equivalent code

https://docs.google.com/file/d/1rmDxwQG11ELvRkRocbe4mF0JslUXyl4X/preview

USING DATA TO BUILD INTUITION

Sidestepping
Heuristics to Consider

Evaluating a story? What are the
numbers?

Proposed Heuristic

If someone is selling you a 3x gain from
Al, it's probably a gain in tech debt.

I Proposed Heuristic >

If Google's CEO admits that the net Al
productivity impact is on the order of
~10% in 2025... believe him.

TAKEAWAYS

ACTIONABLE IDEAS TO APPLY

Developers loathe hype cycles. Win them over with measurement, transparency, and successful examples.

New Al API data released daily:

hitps: //www.gitclear.com/ai correlation

1. Acknowledge
the Risks @9

Your own “move” and
“copy/paste” data can
prove that Al adoption
remains a net benefit to

long-term maintainability.

2. Prove the
Benefits @&,

Developers are
instinctively skeptical.
Earn their respect with
transparent data showing
measurable Al upside.

3. Champion Top
Cohorts

Measure which team
members have used Al
best, and help them teach
their tools & methods.

PROJECT-SPECIFIC ACTIONS TO CONSIDER

4. Set Realistic

Goals

Pick metrics that align
with team success, and
share data on how Al use
is helping realize goals.

