D/

Leadership in Al
Assisted Engineering

LeadDev

Agenda

The impact of GenAl
Challenges with Al Adoption
Reducing fear of Al
Measurement

Employee Success
Compliance and Trust
Unblocking Usage

SDLC Agent Use Cases

TECH

Sundar Pichai says Al is making Google engineers 10%
more productive. Here's how it measures that.

By Hugh Langley

Against Expert Forecasts and Developer Self-Reports, Early-2025 METR
Al Slows Down Experienced Open-Source Developers

In this RCT, 16 developers with moderate Al experience complete 246 tasks in large and complex
projects on which they have an average of 5 years of prior experience.

-50%
-40% - E
-30% 4 |2

20% |

-10% A

0% A T

+10% -

+20% A

Change in time when Al allowed
Slowdown
4

+30% A

+40% - n n -
° Economics expert ML expert Developer forecasts Developer estimates Observed
metr.org | CC-BY forecasts forecasts during study after study result

GenAl is significantly impacting development

A 25% increase in Al adoption is If an individual increases Al adoption by 25%...
associated with a...

documentation quality

%

+ 7.5% increase in documentation s . —Q—
quality code review speed - : _@_
1
GEJ approval speed :_®_
+ 3.4% increase in code quality 3 !
g XFN coordination - —@—
+ 3.1% increase in code review speed tech debt | oo

code complexity

+ 1.3% increase in approval speed

0 5

Estimated % change in outcome

+ 1.8% decrease in code complexity

Point = estimated value
Error bar = 89% uncertainty interval
Figure 2: Impacts of Al adoption on crganizations.

DORA Impact of GenAl in Software Development: https://dora.dev/research/ai/gen-ai-report/

Al seems to deliver modest gains in quality metrics

Average Change Confidence DXI driver for Al Users vs. Non-Al Users
Data from 19,251 developers

18 pt

Average change confidence score: Al users vs. non users max

Change Confidence Score g a i n

4)

2.6 Point
Average
Gain from
using Al

\)

15 pt
max
loss

DXl Score

Non-Al Users

DX

Al seems to deliver modest gains in quality metrics

DXl Score

Average Code Maintainability DXI driver for Al Users vs. Non-Al Users
Data from 20,012 developers

Average code maintainability score: Al users vs. non users max

Code Maintainability Score g a i n

f
2.2 Point
Average

Gain from
using Al

_

~

)

13 pt
max
loss

Non-Al Users

DX

Al seems to deliver modest gains in quality metrics

Change Failure Rate

Average Change Failure Rate% for Al Users vs. Non-Al Users

Data from 61 Companies

Average Change Failure Rate: Al users vs. non users

Change Failure Rate

4%

0%

Non-Al Users

DX

1.77%
max
gain

-

_

0.11%
Reduction

from using
Al

~

)

1.07%
max
loss

Industry averages hide the big picture of quality impact

Per-company Change Confidence DXI impact for Al Users vs. Non-Al Users
Data from 19,251 developers

Per-company Change Confidence impact with Al adoption

Change Confidence Diff
30

20

DXl Impact

-20
Company

DX

Industry averages hide the big picture of quality impact

Per-company Code Maintainability DXI impact for Al Users vs. Non-Al Users
Data from 20,012 developers

Per-company Code Maintainability impact with Al adoption

Code Maintainability Diff
30

20

DXl Impact

-20
Company

DX

Industry averages hide the big picture of quality impact

Per-company Change Failure Rate% impact for Al Users vs. Non-Al Users
Data from 61 companies

Per-company Change Failure Rate impact with Al adoption

Change Failure Rate Diff
2

Change Failure Rate % Impact

DX

GenAl ROI not evenly distributed

Many organizations are seeing positive impacts to KPIs

Others are struggling with adoption and even seeing negative impacts

Top down mandates aren’t working, and are decreasing psychological
safety

GenAl ROI not evenly distributed

Lack of education and enablement on best practices and use cases.

Organizations often just “turn on"” the tech and expect users to be
proficient.

Difficulty measuring the impact and knowing what to measure.

Strategy

clear Al policies 1

time to learn 4

alleviate displacement worries 4

encourage Al in workflows 1

transparent about Al plans 1

mandatory trainings 1

invest in employee

development |
Al adoption goals 1

guidelinesto |

mitigate privacy issues

policies on when |

and where to use Al

safeguard against sec 1

and privacy breaches

resources to learn about Al

-

-100

-50

50

100

Bayesian Posterior Distributions of Al Adoption Stategies: https://dora.dev/research/ai/gen-ai-report/

Top Distribution Analysis

High Likelihood (80-95%)

Clear Al policies: ~90% - Very strong positive distribution with most mass well to the right
Time to learn: ~85% - Strong positive distribution with clear rightward skew

Alleviate displacement worries: ~80% - Solid positive distribution, though with some
uncertainty

Moderate-High Likelihood (60-75%)

Encourage Al in workflows: ~70% - Positive distribution but with more spread
Transparent about Al plans: ~65% - Moderately positive with reasonable uncertainty

Mandatory trainings: ~65% - Similar positive trend but wider distribution

As leaders, we should drive...

Integration across SDLC

The biggest payoffs are rewarded to companies that think
beyond code generation, and integrate across multiple
areas of the SDLC, including always-on code reviews,
automated incident management, refactor, and
documentation

Open metrics discussions

Measure GenAl impact using tools such as DX's GenAl
impact reporting. Advertise and evangelize these metrics
to teams. Showcase teams with particularly good adoption
and velocity improvements to drive healthy competition.

Compliance and trust

Validate Al-generated code through human oversight and
verification. Ensure proper testing gates exist to limit
change failures. If your culture already embraces test-
driven design, then continue that practice and continue to
run your battery of linting and testing against output code.

Unblocking usage

Make sure that there are no impediments to using code
assistants for the use cases called out in this document.
Proactively seek ways to limit barriers to adoption,
including running models on-premise and training locally
on code repositories.

Reducing fear of Al

Frame Al adoption as a force multiplier for performance,
unlocking organizational capabilities. Remind engineers
that these tools are meant to augment capabilities and
transcend what was possible before, not replace jobs.

Employee success

Developers who leverage Al will outperform those who
resist adoption. Remind engineers that this is an
opportunity to learn about techniques that are likely to
benefit them for the remainder of their careers.

https://getdx.com/genai/?utm_source=guidetoaiassistedeng
https://getdx.com/genai/?utm_source=guidetoaiassistedeng

Reducing fear of Al

Frame Al adoption as a force multiplier for performance, unlocking
organizational capabilities. Remind engineers that these tools are
meant to augment capabilities and transcend what was possible

before, not replace jobs.

Google's Project Aristotle

- Research project undertaken by Google to understand what increases
performance and makes teams successful.

- "The whole is greater than the sum of its parts”

- Assumed that the recipe for a successful team would be a combination
of high performers, an experienced manager and unlimited free
resources.

- They were wrong. The high performing teams were the ones with
greatest psychological safety.

Leaderboards

mini-SWE-agent achieves up to 65% on SWE-bench Verified in 100 lines of python code. Click here to learn more.

Bash Only Verified Lite Multimodal
Full'is a large benchmark made of 2000 instances (details)

Filters: = Open Scaffold ¥ All Tags ¥

Model % Resolved Org Logs Trajs Site

iy}

& SWE-agent 1.0 (Claude 3.7 Sonnet) v v

& OpenHands + CodeAct v2.1 (claude-3-5-sonnet-20241022) v v

R

AutoCodeRover-v2.0 (Claude-3.5-Sonnet-20241022)

SWE-agent + Claude 3.5 Sonnet

@ A

SwWE-agent + GPT 4 (1106)

/2]

¥ SwWE-agent + GPT 4o (2024-85-13)

=

SWE-agent + Claude 3 Opus

2024-04-02

RAG + Claude 3 Opus

2023-10-10

RAG + Claude 2

RAG + GPT 4 (1106) 2024-04-02
RAG + SWE-Llama 13B 2023-10-10
RAG + SWE-Llama 7B 2023-10-10

RAG + ChatGPT 3.5 2023-10-10

Transparency - Set Clear Intent and Expectations

Explain the "why": Frame GenAl adoption as a way to augment, not replace, engineers'
skills. Show data and case studies illustrating benefits and pitfalls.

Address fears directly: Proactively acknowledge concerns about job security,
performance monitoring, or Al errors, clarify boundaries on how Al outputs will be
evaluated and used.

Open metrics discussion: If you'll measure Al usage or impact, share exactly what's
being tracked and why, avoiding “black box" surveillance.

Open metrics discussions

Measure GenAl impact using tools such as DX's GenAl impact
reporting. Advertise and evangelize these metrics to teams.
Showcase teams with particularly good adoption and velocity

improvements. Make people feel comfortable about what's
being tracked.

https://getdx.com/genai/?utm_source=guidetoaiassistedeng
https://getdx.com/genai/?utm_source=guidetoaiassistedeng

Balance short-term speed gains with longer-
term maintainability and quality

Quality and Maintainability

® PR throughput
® Time savings per developer
® PRcycletime

Change failure rate
Perception of quality
Change confidence
Maintainability

% of time allocated to bugs

Measuring GenAl impact

Metric Type

Telemetry metrics

Good For

Measuring impact on
developer output

Not Good For

Quantifying ROI

Understanding how tools
are being used

Challenges

Limited, possibly inaccurate
insight

Incomplete story

Experience sampling

Quantifying ROI

Identifying best use
cases

Collecting large amounts of
data at once

Difficult to set up

Must be run over period of
time

Self-reported

Measuring adoption,
developer satisfaction,
productivity

Quantifying ROI

Can only be run periodically

Participation rates

Collect workflow and self-reported data with
a mixed-methods approach

System data: Admin APIs to track usage, spending, token consumption, and code suggestion
acceptance. System metrics from your development stack.

Periodic surveys: Quarterly or regular surveys capture trends in developer experience that system
data alone can miss. Measure perceptions like developer satisfaction, confidence in changes, or how
maintainable code feels.

Experience Sampling: Gather targeted, in-the-moment feedback by asking brief questions during key
workflows. EQ: after submitting a pull request, ask if Al was used to write the code or whether Al-
generated code felt easier or harder to understand.

Table 1: DX Al Measurement Framework * Metrics for autonomous Al agents

Utilization Impact Cost

How much are developers adopting and utilizing Al tools? How is Al impacting engineering productivity? Is our Al spend and return on investment optimal?

« Al tool usage (DAUs/WAUs) » Al-driven time savings (dev hours/week) » Al spend (both total and per developer)

» Percentage of PRs that are Al-assisted « Developer satisfaction « Net time gain per developer
(time savings - Al spend)

Percentage of committed code that is « DX Core 4 metrics, including:

Al-generated « Agent hourly rate (HEH / Al spend) *

¢ PR throughput

Tasks assigned to agents * » Perceived rate of delivery
» Developer Experience Index (DXI)

« Code maintainability
« Change confidence
» Change fail percentage

« Human-equivalent hours (HEH) of work
completed by agents *

Foundational DevEx and DevProd
metrics still matter the most.

TrueThroughput™ © @ TrueThroughput™ ® % moderate adopters SQL PR revert rate @ ®PRrevertrate @ % moderate adopters SQL
May 2025 Aug 2025 May 2025 Aug 2025
PR cycle time © @ PR cycle time @ % moderate adopters SQL % feature development © ® % feature development ®@ % moderate adopters SQL

__——_—_—____———____—___

May 2025 Aug 2025 May 2025 Aug 2025
Diffs per engineer O ® Diffs per engineer @ % moderate adopters DXI @ @ DXl @ % moderate adopters
May 2025 Aug 2025 May 2025 Aug 2025

What top companies are currently measuring

S= Microsoft

<2 Dropbox

Metrics based around DX Core 4 and DX Al

Booking.com

Microsoft measures the impact of Al with their Metrics around utilization, velocity, quality, and

Engineering Thrive program, using: Measurement Framework: sentiment:
e Adoption/usage of Al tools and agentic Adoption/Engagement - WAUs and e DAU/WAU
workflows DAUs e Time saved per dev
e System Velocity Developer sentiment - CSAT (“Using Al e % of PRs that are Al-assisted
e Developer Satisfaction tools has improved my overall e PR Throughput
e Change Failure Rate productivity as a software developer.”) e Developer CSAT
e Bad Developer Days (a telemetry- Velocity - PR throughput at company e Change failure rate

based measure of toil and disruption)

level

Engineering hours saved - User-
reported time savings and Al lines
added (proxy)

% Al code - Al lines added / Total lines
added

Quality - Change fail percentage (self-
reported)

Compliance and trust

Validate Al-generated code through human oversight and
verification. Ensure proper testing gates exist to limit change
failures. If your culture already embraces test-driven design,
then continue that practice and continue to run your battery of
linting and testing against output code.

System prompt update loop

Most enterprise Al solutions will allow you to
update the “system prompt” that underlies every
prompt sent to the assistant. This is almost like
templating, in that the rules contained in this
prompt will be applied to every prompt sent into
the assistant.

When the model creates inaccurate or suboptimal
output, in many cases that output can be corrected
going forward by changing the system prompt.

Example usage

[Include Simple System Prompt]
You have been observed making the following errors:

1. Proposing outdated Spring Boot versions (older than 2.6).

2. Suggesting or using deprecated methods in the java.* libraries.

3. Returning code snippets containing syntax errors such as missing parentheses
or braces.

Your new rules:

- Always provide code snippets that use Spring Boot 3.x or newer, unless the user
explicitly requests otherwise.

- Verify that you are not using deprecated methods from the Java standard library
(check the current Java LTS for deprecation).

- Double-check that any code snippets are syntactically valid (balanced
parentheses, braces, etc.).

When responding:

- Provide relevant explanations for your code choices.

- If uncertain, indicate possible methods or approaches rather than returning an
incorrect snippet.

- Do not include references to internal or proprietary APIs beyond standard library
or Spring Boot dependencies.

Determinism and non- Example usage
determinism

When we set temperature to a very low value, say “0.0001” and set a prompt like:

Generative Al models operate on the principle of Create a Javascript method to render a gradient of colors from blue to red.

token-based probability distributions, where each

generated token (i.e. a word, sub-word, or even a

single character) is influenced by prior context and

model pa rameters. .. there is little to no variation in the output. In this case, there’s no difference at all:
Example 1 Example 2

Determinism can be controlled using temperature,

a system parameter that adjusts the randomness of e el e s

token selection. e

e>Blue to Red Gradient</titles «titlesBlue to Red Gradiente/titles
=styles

canvas {

display: block; display: block;

A lower temperature (i.e., “0.1” as opposed to . .
“0.9”) makes the model more deterministic by :
favoring high-probability tokens, leading to
consistent and repeatable outputs. Conversely, a
higher temperature (i.e., “0.9” or above) increases
randomness.

<canvae 1d="gradientCanvas’s</canvees nves id="gradientCanvas"s< /canvass

Determinism and non-determinism

However, look at the extreme difference in approaches when we set the temperature to 0.9 and
use the same prompt:

Create a Javascript method to render a gradient of colors from blue to red. o

QOutput A Output B
In the first attempt, the model creates an HTML document with embedded code that uses CSS

But look what happens when we execute the exact same prompt a second time. The approach
<style> tags to manage drawing the gradient.

is entirely different, creating a Javascript function without any HTML, and using the HTML5S

canvas convention to draw the gradient!
<IDOCTYPE html>

<html=
<head>
<styles function renderGradient() {
.gradient-container { /! Create a new blank canvas element with size 488x488
width: 6@8px; const canvas = document.createElement('canvas');
height: 1@8px; canvas.width = 488;
padding: 2@px; canvas.height = 488;

position: relative;
background: repeating-linear-gradient(

/I Create an image element that will hold the gradient
to right,

const img = document.createElement(img");
var(--from-blue),

var(--to-red)
)i
transition: background linear-gradient(95%);

img.src = '
img.style.width = canvas.width;
img.style.height = canvas.height;

Guardrails — Protect Quality and Trust

Clear validation steps: Require human review of Al outputs in critical areas to
ensure code quality and compliance.

Bias and security training: Teach engineers how to spot hallucinations, data
leaks, or biased outputs in Al-generated code or documentation.

Feedback loops: Maintain open channels (Slack channels, retros, office
hours) for reporting Al-related issues without fear of blame.

Employee Success

Developers who leverage Al will outperform those who resist
adoption. Remind engineers that this is an opportunity to learn

about techniques that are likely to benefit them for the remainder
of their careers.

clear Al policies 1

alleviate displacement worries 4

ﬁ>>>

Provide both education and adequate
time to learn.

eeeee D/

Guide to Al Assisted
Engineering

e
—

DX GenAl study overview

Purpose: Discover the highest value prompting practices and use cases

Method: Interview S-level+ leaders who have successfully rolled out coding
assistants, survey developers who are reporting 1+ hr week savings

Discovery: Linkedln Polls to target participants, 1:1interviews with leaders,
broad survey of developers stack ranking most valuable use cases

Study outcome

Stack trace analysis
Refactoring existing code
Mid-loop generation

Test case generation
Learning new technigues
Complex query writing
Code documentation
Brainstorming and planning
Initial code scaffolding

Code explanation

o

-
o=

)
o

)
o

Unblock usage

Make sure that there are no impediments to using code
assistants and agents. Proactively seek ways to limit barriers to

adoption, including running models on-premise and training
locally on code repositories.

Al Value Starts Where Engineers Can Apply It Safely

Identify & Prioritize High-Impact Workflows: Focus on areas like code reviews,
documentation, incident analysis, and architecture exploration where GenAl can deliver
measurable gains.

Remove Bottlenecks to Experimentation: Give engineers access to safe, compliant
sandboxes so they can test and refine Al-assisted processes.

Champion Innovation Culture: Model curiosity and support “safe-to-fail” pilots to
encourage creative exploration without risk aversion.

Security & Compliance Should Enable, Not Block

Leverage Self-Hosted & Private Models: Keep sensitive IP and customer data inside
your trust boundary while enabling advanced GenAl capabilities.

Partner with Compliance Early: Co-desigh workflows that satisfy regulatory
obligations without neutering innovation.

Think Creatively Around Barriers: Use synthetic datasets, anonymization, and
prompt engineering to sidestep privacy or regulatory blockers.

Integrate across SDLC

The biggest payoffs are awarded to companies that think beyond
code generation, and integrate across multiple areas of the SDLC,
including always-on code reviews, automated incident management,
refactor, and documentation

SDLC Agent use cases

“An hour saved on something that isn't the
bottleneck is worthless" - Eli Goldratt

N

Supplier

Production
Control

] Find the bottleneck.
Fix the bottleneck.

'

sle

max 12,500 pes

wrt _135.000

e

v

Moldirg

PT= 6s

T, = 6s
A= mg

Crlw = 10s

Max_ 2500
per Coior

1Q

3.600

L

Painting

O, 3

PT = 24 5

CTQ= 8s

Clee= 105

C/O= 30 min

24

Max. 2500
per Coior

iEle

0X0X

v

Logo
Printing

AN

10O 1

PT= 80s

CT;= 8s

¢/0 = 5 mir]

EPEI= 75 h

CT[,‘ 9s

Max. 333

1.800

Assembly

+ 2as filling
O 3

PT= 35s

CT; - 10s

Y= 100%

CTew= 10s

[

Max. 2500

27.000

80 | 35

WT: 144.000 sec
PT: 151 sec
PLT: 144.151 sec

Morgan Stanley - DevGen.Al

Morgan Stanley built a legacy code refactor solution

Agents read legacy code and create developer specs

Saves over 280,000 hours annually by eliminating reverse engineering

Faire - Automated Code Review

"Fairey” triggers off of GitHub PR and provides always-on review

Solution pulls context, surrounding code, and documentation, and provides
PR comments

Completes roughly 3,000 reviews a week

Canva - PRD Generation

Internal PRD generator develops epics, stories, and even mockups from
prompts from PMs

MCP servers expose context and documentation, and connects to Jira and
Figma

Significantly streamlines PRD process, generates developer-friendly specs

Spotify - Incident Management

Internal incident management agent platform drafts remediation steps
directly into SRE channels

Monitors logs, correlates alerts, and suggests runbook steps

Currently handling 90% of incidents at Spotify

Next Steps

Distribute the Al guide as a reference for integrating Al into your
development workflows

Determine a method for measuring and evaluating GenAl impact

Track and measure Al adoption and iterate on best practices and use cases

S

LIVE WEBINAR

Running data-driven evaluations of Al
engineering tools

Nov 13, 9:00am PT / 6:00pm CET

Al tools are one of the biggest bets engineering leaders are making, but choosing
the right ones requires more than a trial run. A successful POC depends on clear
goals, structured evaluation, and the right success metrics. Join DX CEO Abi Noda
and CTO Laura Tacho as they share how to run Al tool evaluations that deliver
actionable insights and lasting impact.

In this session, you'll learn:

* How to choose the right Al tools to evaluate
e Which developers should be included in the evaluation

e What to measure in order to accurately evaluate tool performance

Speakers

Register Here!

AbiNoda " Laura Tacho
CEO, DX ., CTO,DX

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5: AI seems to deliver modest gains in quality metrics
	Slide 6: AI seems to deliver modest gains in quality metrics
	Slide 7: AI seems to deliver modest gains in quality metrics
	Slide 8: Industry averages hide the big picture of quality impact
	Slide 9: Industry averages hide the big picture of quality impact
	Slide 10: Industry averages hide the big picture of quality impact
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50

