DEALING WITH TECH DEBT

LeadDev New York
Oct 2025

Meri Williams, ChromeRose @Geek _Manager



rtlickr.com/photos/kodomut/3667608102/

M&S

DIGITAL

{") monzo

| GOV.UK

| 100 days ~
THE PRINCIFLES OF l / :

PROJECT |
MANAGEMENT

L)

Meri Williams, ChromeRose @Geek _Manager



WHAT IS TECH DEBT?
ANYTHING THAT MAKES CODE...
1) DIFFICULT TO UNDERSTAND

2) DIFFICULT TO SCALE
3) DIFFICULT TO CHANGE

Meri Williams, ChromeRose @Geek _Manager



Meri Williams, ChromeRose @Geek _Manager




WHY DOES TECH DEBT HAPPEN?

SAME REASON FINANCIAL DEBT HAPPENS.

WE NEED OR WANT SOMETHING NOW BUT
CAN’T AFFORD TO PAY FORIT.

Meri Williams, ChromeRose @Geek _Manager



L SHUT'UPJAND

TAKEIMY_MONEY!

Meri Williams, ChromeRose



IT’S NOT EVIL OR STUPID TO BORROW
AGAINST THE FUTURE.

HOWEVER, IT BECOMES A PROBLEM WHEN
INTEREST PAYMENTS GET TOO LARGE ...

OR WE PAY THE MORTGAGE ON A CREDIT
CARD!

Meri Williams, ChromeRose @Geek _Manager



IT’S ALL JUST A
MATTER OF
PERSPECTIVE

DON’T ASSUME
YOUR
PREDECESSORS
WERE STUPID!

It was never a dress.

Meri Williams, ChromeRose @Geek _Manager



OUR BLESSED HOMELAND THEIR BARBAROUS WASTES
OUR GLORIOUS THEIR WICKED
LEADER DESPOT
OUR GRERT THEIR PRIMITIVE
RELIGION SUPERSTITION
OUR NOBLE THEIR BACKWARD
POPULACE CAVAGES
OUR HEROIC  THEIR BRUTISH
SO DVENTURERS ‘NVADERS I,
BN \\\ ; /// VI
\\\\\\ & -;d— W \\\\\ ///// // ‘_ & //// %
0 o
= . \\\( N \ \\\\ l/// 72 I'///,/’
R AL \\\\\t‘\\\\\\ \ :\i i}\\\\\}:\ il 0/ ,//f/ Z //; 7 //// st {{” o/ ”/”
NN S =

https: //tW|tter com/tomgauId/status/571994690289061888

Meri Williams, ChromeRose @Geek _Manager



(AS AN ASIDE, THIS IS WHY
ARCHITECTURAL DECISION RECORDS ARE
MAGICAL.

THEY GIVE YOU THE WHY AND THE
CONTEXT TO CHOICES, SO AS CONTEXT
CHANGES YOU CAN RE-EVALUATE ... BUT
ALSO UNDERSTAND)

Meri Williams, ChromeRose @Geek _Manager



Meri Williams, ChromeRose @Geek_Manager



(IT’S NOT LEGACY

IT’S VINTAGE)

@Geek _Manager

)
(%]
O
o
()
=
@]
—
=
o
y
=
ke
=
Q
=




FIGURE 1: THREE CORE DIMENSIONS OF DEVELOPER EXPERIENCE

low State THREE THINGS
MATTER FOR

DEVELOPER

EXPERIENCE:

- FEEDBACK
DevEx LOOPS

- COGNITIVE
LOAD

o ops s - FLOW STATE

https://dl.acm.org/doi/pdf/10.1145/3595878

Meri Williams, ChromeRose @Geek _Manager



THE WORST KIND OF TECH DEBT AFFECTS
ALL THREE.

IT’S UNTESTED €< FEEDBACK LOOPS
IT’S COMPLEX OR COMPLICATED €
COGNITIVE LOAD

IT’S UNDOCUMENTED € FLOW STATE

Meri Williams, ChromeRose @Geek _Manager



AT PLEO, WE HAD A CASE LIKE THIS.

THE VILLAIN OF THE STORY WAS DEIMOS,
THE MONOLITH THAT IN MANY WAYS HAD
MADE THE COMPANY SUCCEED IN THE
EARLY DAYS (AFTER ALL, RUNNING CODE IS
DELIVERING VALUE!)

Meri Williams, ChromeRose @Geek _Manager



BUT DEIMOS WAS

- DIFFICULT TO UNDERSTAND (”SPAGHETTI
CODE”, POORLY STRUCTURED &
DOCUMENTED)

- DIFFICULT TO SCALE (REACHING LIMITS)
- DIFFICULT TO CHANGE (CAUSING
INCIDENTS)

Meri Williams, ChromeRose @Geek _Manager



Meri Williams, ChromeRose

WHEN | TOOK OVER AS CTO,
THERE HAD ALREADY BEEN 2
OR 3 FAILED ATTEMPTS TO KILL
DEIMOS.

WE REALLY REALLY NEEDED TO
GET IT RIGHT THIS TIME.

@Geek _Manager



Meri Williams, ChromeRose @Geek _Manager




WHAT TO DO?
A HUGE REWRITE WAS APPEALING.

BUT THEY ALWAYS TAKE TWICE AS LONG AS
YOU WANT, AND CAN KILL COMPANIES.

Meri Williams, ChromeRose @Geek _Manager



DEALING WITH TECH DEBT:

1) VISUALIZE THE PROBLEM

2) BENCHMARK VS INDUSTRY
3) EVANGELIZE & EXPLAIN

4) SECURE SOME AIR COVER
5) DELIVER, DELIVER, DELIVER!

Meri Williams, ChromeRose @Geek _Manager



1) VISUALIZE THE PROBLEM

Cycle time © @ T™m Addtarget

WE USED DORA METRICS

5.6 days

OUR CYCLE TIME WAS
5.6 DAYS!

Meri Williams, ChromeRose @Geek _Manager



2) BENCHMARK VS INDUSTRY

Software Engineering Benchmarks

e THIS HELPED

e Frequency

=2 2-15 1.5-1

Coding Time

., <05 05-25 2.5-24 >24
:F!F!?wew'[ima» <05 05-3 3-18 s18
peneyTime <3 3-69 69-197 >197 B OA R D I 0
ST <19 19-66 66 - 218 >218
Deplo; mPIr‘n Frequency > 1/day > 2/week 1-2/week < 1jweek

DORA -
ilrango Failure Rate <1% 1% - 8% 8% - 39% > 39%
o <7 7-9 9-10 >10
PRsze <98 98 - 148 148 - 218 >218 THE PROBI EM
|cede changes)
work Rate <2 2% - 5% 5% - 7% >7%

Quality and Refactor Rate <9% 9% -15% 15% - 21% >21%

Predictability (%) °
lanning Acuracy >85% 85% - 60% 60% - 40% <40% ‘ O N ‘ E P I UA I I Y
Capacity Accuracy deal Range Inger Gammit Potential Under Gommit Patential Gver Commit
(per sprnt 85% - 115% above 130% 116% - 130% 70% - 84%

2022 Orgs 3,694,690 Pull Reguests | 103,807 Active Contributors Time Frame 08/01/22 - 08/01/23 | At Least 400 Branches In Org

Meri Williams, ChromeRose @Geek _Manager




3) EVANGELIZE & EXPLAIN

WE TALKED WITH THE BROADER COMPANY
ABOUT DEIMOS AND THE PROBLEMS IT
WAS CAUSING.

PRIMARILY IN INCIDENTS AND STOPPING US
DELIVERING NEW CUSTOMER FEATURES.

Meri Williams, ChromeRose @Geek _Manager



4) SECURE SOME AIR COVER

| ASKED BOARD & EXEC TO ALLOW US 50%
OF OUR TIME FIXING DEIMOS WHILST STILL
DELIVERING NEW CUSTOMER FEATURES.

(1 ALSO TOLD THEM TO FIRE ME IN A YEAR IF
| WAS STILL COMPLAINING ABOUT DEIMOS)

Meri Williams, ChromeRose @Geek _Manager



5) DELIVER, DELIVER, DELIVER

WE SET OUT AN API-FIRST STRATEGY AND
DID A FULL PROGRAM OF TRAINING (WITH
SKILLERWHALE) TO UPSKILL OUR
ENGINEERS.

THEN WE PULLED PIECES OUT OF DEIMOS
INTO PROPER APIS.

Meri Williams, ChromeRose @Geek _Manager



5) DELIVER, DELIVER, DELIVER

Component
%y Export API

@ Tags API

User Provisioning (SCIM) API
Al Accounting Entries (READ) API
=" Accounting Entries (WRITE) API
B Receipts API

e Cards API

© Limits API

il Companies APl v4

B Employees APl v4

24 Attendees API (sub resource of AccEntry)

#% Contacts API

i{z Balance Entries API

i Categories API

o Taxes API

AggregatedAccountingEntriesAPI
Employees APl v5

Accounts API

Activity Log API

Vendor API

Meri Williams, ChromeRose

Tearr
Accounting Experience
Accounting Experience
Manage Entities
Expense Core
Expense Core
Expense Core
Card Experience
Card Experience
Manage Entities
Manage Entities
Expense Core
Expense Core
Team Pocket
Accounting Experience
Accounting Experience
Expense Core

Manage Entities

Expense Core

Accounting Experience

Internal status
® Taking Traffic
® Taking Traffic
® Deployed to Produ...
® Taking Traffic
® Development
® Taking Traffic
® Deployed to Produ...
® Taking Traffic
® Taking Traffic
® Taking Traffic
Testing
Testing
® Taking Traffic
® Taking Traffic
® Taking Traffic
@ Development
® Taking Traffic
® Development
® Development

® Development

External ¢ NU, 1 VE UL SEET UIdL.

® Public V1

® Public V1
Development V1
Development V1

® Not planned Later
Should not be exposed Never

@ Not planned TBD

® Not planned TBD
Should not be exposed Never
Should not be exposed Never

® Not planned Never

® Not planned TBD

@ Not planned Never

® Not planned V1

® Public Al

® Not planned Later
Planned V1
Development

@ Not planned Later

@ Partner validation Later

API ALL THE

THINGS!

CLEAN ALL THE
THINGS!

@Geek _Manager




Offering maturing | 2023 snapshot 80+% of development on the core product
verticals development was held back by tech debt

T Monolith entangled

Easy Connect & Be in Flowing Optimized
Pay Manage Control Cashflows Spending
I Reimbursements Auto Enrichment I Budgets Automatic funds Analytics
management
! Invoices ! Automated ! Approval (top-up) Al spend insights
‘pre-bookkeeping’ workflows
I Cards Reserve Benchmarks
T Accounting sync 1 Automated
controls & Blocks Overdraft Rewards
I User sync
1 Policy T Spend Category
! Multi-entity management Partnerships/VAS
(e.g. TravelPerk)
Vendor ! Audit &
management Reporting ESG
ggpnic* 80+% 80+% 80+% 20+% 20+%
W
build Reimbursement All logic APls needed Card Limit
balances for accounting Review management
Card ordering integrations and user
Card Limit mgmt

Meri Williams, ChromeRose @Geek _Manager




PREREAD

Tech maturing | WWe have moved review management out of our monolith
(Deimos) providing improved feature functionality AND vastly faster experience

Latency over time as we migrated review management to new approach out of Deimos

[ » M

Traffic in Deimos over time and the trend line hitting our H1 target

25M

Deimos traffic is now significantly down,
reaping the benefits of our late 2023 and L) [
early 2024 investments in decommissioning
(vastly reducing risk)

July August September

Meri Williams, ChromeRose @Geek _Manager




5) DELIVER, DELIVER, DELIVER

MOST IMPORTANTLY, WE DIDN’T GO HIDE IN
A CORNER AND JUST DEAL WITH TECH DEBT.

WE DELIVERED CUSTOMER VALUE ALL
ALONG THE WAY INCLUDING SOME LONG-
AWAITED FEATURES DEIMOS WAS BLOCKING.

Meri Williams, ChromeRose @Geek _Manager



5) DELIVER, DELIVER, DELIVER

Code / Overview ® 3 [ Nov1,2022-Sep 30,2025

P .
(AP} All Domains ~

Cycle time () @ '3 Add target Throughput, total ()
Cycle time, avg. PRs merged, avg.
3.2 days PR -42% 493 [ week +468%
10d 1,200
8d
200
6d
600
44
300
2d
Od 0
Mov1 Feb13 May29 Sep11 Dec25 Apr8 Jul22  Novd4 Feb17 Jun2 Sepl5 Mov1 Feb 13 May29 Sep11 Dec25 Apr8 Jul22  Novd4 Feb17 Jun2 Sepl5

Meri Williams, ChromeRose @Geek _Manager




IT WOULD HAVE BEEN BETTER THOUGH IF
THINGS HAD NEVER GOTTEN SO BAD THAT
THIS MAJOR APPROACH WAS NEEDED.

SO HOW DO WE TAME TECH DEBT ON A
DAILY BASIS?

Meri Williams, ChromeRose @Geek _Manager



IS TECH DEBT INEVITABLE?

LR
b
':-\\

i PO AR

Meri Williams, ChromeRose @Geek_Manager



WANTED YOU TO LET

> =

IS S 2
e et o i

Meri Williams, ChromeRose @Geek _Manager



FIGURE 1: THREE CORE DIMENSIONS OF DEVELOPER EXPERIENCE

low State THREE THINGS
MATTER FOR

DEVELOPER

EXPERIENCE:

- FEEDBACK
DevEx LOOPS

- COGNITIVE
LOAD

o ops s - FLOW STATE

https://dl.acm.org/doi/pdf/10.1145/3595878

Meri Williams, ChromeRose @Geek _Manager



FEEDBACK LOOPS: ADD TESTS WHERE THEY
ARE MISSING

COGNITIVE LOAD: REFACTOR COMPLEX &
COMPLICATED CODE (SEE CRAP MEASURE)

FLOW STATE: ADD DOCUMENTATION

Meri Williams, ChromeRose @Geek _Manager



THE GREAT NEWS?

DOING THESE THINGS HELPS YOU TO
GRAPPLE WITH THE CODE AND DELIVER
FASTER IN ANY CASE!

START WITH TECH DEBT IMPROVEMENT

Meri Williams, ChromeRose @Geek _Manager



BUILD, REFACTOR,
LET PLATFORMS EMERGE

3 jterations —————3

solutions

T |

user needs platforms emerge

https://medium.com/@postenterprise/the-abuse-of-reuse-96b2e0af01a7

Meri Williams, ChromeRose @Geek _Manager



JELLYFISH IN ARMOUR

PUT AN
EXPIRY DATE
ON ANY
(NECESSARY)
DIRTY HACKS

CHATS HEMDRICKS @ 2009

HOW MILK CONTAINERS SHOULD BE

Meri Williams, ChromeRose @Geek _Manager



DON’T WAIT FOR PERMISSION TO
IMPROVE THINGS

ADOPT “BOYSCOUT” RULE

BUILD IMPROVEMENT IN

Meri Williams, ChromeRose @Geek _Manager



http://xprogramming.com/articles/refactoring-not-on-the-backlog/

Meri Williams, ChromeRose @Geek_Manager




REFACTOR YOUR MONOLITH

START CONSUMING APIS
INTERNALLY TOO

EAT YOUR OWN DOGFOOD

Meri Williams, ChromeRose @Geek _Manager



| HAVEN'T EATEN INAN HOUR

b 28

- 4

THAT:S7/D0G HOURS

.~

Meri Williams, ChromeRose @Geek _Manager




212 BR(

e e

Meri Williams, ChromeRose @Geek _Manager



DEALING WITH TECH DEBT:

1) VISUALIZE THE PROBLEM

2) BENCHMARK VS INDUSTRY
3) EVANGELIZE & EXPLAIN

4) SECURE SOME AIR COVER
5) DELIVER, DELIVER, DELIVER!

Meri Williams, ChromeRose @Geek _Manager



Meri Williams, ChromeRose @Geek _Manager



	Slide 1: DEALING WITH TECH DEBT
	Slide 2
	Slide 3: What is Tech Debt?   Anything that makes Code…  1) Difficult to understand 2) Difficult to Scale 3) Difficult to Change   
	Slide 4
	Slide 5: WHY DOES TECH DEBT HAPPEN?  Same reason financial debt happens.   We need or want something now but can’t afford to pay for it.  
	Slide 6
	Slide 7: It’s not evil OR STUPID to borrow against the future.   However, it becomes a problem when interest payments get too large …   or we pay the mortgage on a credit card!   
	Slide 8
	Slide 9:   
	Slide 10: (AS an aside, this is why architectural decision records are magical.   They give you the WHY and the context to choices, so as context changes you can re-evaluate ... But also understand)  
	Slide 11: We don’t all have the benefit of starting greenfield
	Slide 12: (It’s not legacy  it’s vintage)
	Slide 13
	Slide 14: The worst kind of tech debt affects all three.   It’s untested  feedback loops It’s complex or complicated  cognitive load It’s undocumented  flow state  
	Slide 15: At Pleo, we had a case like this.   The villain of the story was Deimos, the monolith that in many ways had made the company succeed in the early days (after all, running code is delivering value!) 
	Slide 16: BUT deimos waS   - Difficult to understand (”spaghetti code”, poorly structured & documented) - Difficult to scale (reaching limits) - Difficult to change (causing incidents)
	Slide 17
	Slide 18
	Slide 19: What to do?   A HUGE rewrite was appealing.   But they always take twice as long as you want, and can kill companies. 
	Slide 20: Dealing with tech debt:  1) Visualize the problem 2) Benchmark vs industry 3) Evangelize & explain 4) Secure some air cover 5) Deliver, Deliver, Deliver!
	Slide 21: 1) Visualize the problem  we used DORA metrics  Our cycle time was  5.6 days! 
	Slide 22: 2) Benchmark vs industry
	Slide 23: 3) EVANGELIZE & EXPLAIN  We talked with the broader company about Deimos and the problems it was causing.   primarily in incidents and stopping us delivering new customer features.
	Slide 24: 4) Secure SOME air cover  I asked board & Exec to allow us 50% of our time fixing Deimos whilst still delivering new customer features.   (I also told them to fire me in a year if I was still complaining about Deimos)
	Slide 25: 5) Deliver, deliver, deliver  We set out an API-first strategy and did a full program of training (with Skillerwhale) to upskill our engineers.   Then we pulled pieces out of deimos into proper APIs.
	Slide 26: 5) Deliver, deliver, deliver  
	Slide 27
	Slide 28
	Slide 29: 5) Deliver, deliver, deliver  Most importantly, we didn’t go hide in a corner and just deal with tech debt.   We delivered customer value all along the way including some long-awaited features deimos was blocking.
	Slide 30: 5) Deliver, deliver, deliver  
	Slide 31: It would have been better though if things had never gotten so bad that this major approach was needed.   So how do we tame tech debt on a daily basis? 
	Slide 32
	Slide 33: I never meant TO START A WAR, I JUST WANTED YOU TO LET ME IN
	Slide 34
	Slide 35: Feedback Loops: Add tests where they are missing  Cognitive Load: refactor complex & complicated code (see CRAP measure)   FLOW state: Add documentatiON
	Slide 36: The great news?   Doing these things helps you to grapple with the code and deliver faster in any case!   Start with tech debt improvement
	Slide 37: Build, refactor,  let platforms emerge
	Slide 38: Put an expiry date on any (necessary) dirty hacks
	Slide 39: Don’t wait for permission to improve things  adopt “boyscout” rule  build improvement in
	Slide 40
	Slide 41: Refactor your monolith  start consuming APIs internally too  eat your own dogfood
	Slide 42
	Slide 43
	Slide 44: Dealing with tech debt:  1) Visualize the problem 2) Benchmark vs industry 3) Evangelize & explain 4) Secure some air cover 5) Deliver, Deliver, Deliver!
	Slide 45

