
Meri Williams, ChromeRose @Geek_Manager

DEALING WITH TECH DEBT

LeadDev Berlin

Nov 2024



Meri Williams, ChromeRose @Geek_Manager

http://www.flickr.com/photos/kodomut/3667608102/



Meri Williams, ChromeRose                 @Geek_Manager

WHAT IS TECH DEBT? 

ANYTHING THAT MAKES CODE…

1) DIFFICULT TO UNDERSTAND
2) DIFFICULT TO SCALE
3) DIFFICULT TO CHANGE 



Meri Williams, ChromeRose                 @Geek_Manager



Meri Williams, ChromeRose                 @Geek_Manager

WHY DOES TECH DEBT HAPPEN?

SAME REASON FINANCIAL DEBT HAPPENS. 

WE NEED OR WANT SOMETHING NOW BUT 
CAN’T AFFORD TO PAY FOR IT.



Meri Williams, ChromeRose                 @Geek_Manager



Meri Williams, ChromeRose                 @Geek_Manager

IT’S NOT EVIL OR STUPID TO BORROW 
AGAINST THE FUTURE. 

HOWEVER, IT BECOMES A PROBLEM WHEN 
INTEREST PAYMENTS GET TOO LARGE … 

OR WE PAY THE MORTGAGE ON A CREDIT 
CARD! 



Meri Williams, ChromeRose                 @Geek_Manager

IT’S ALL JUST A 
MATTER OF 
PERSPECTIVE

DON’T ASSUME 
YOUR 
PREDECESSORS 
WERE STUPID!



Meri Williams, ChromeRose                 @Geek_Manager

https://twitter.com/tomgauld/status/571994690289061888



Meri Williams, ChromeRose                 @Geek_Manager

(AS AN ASIDE, THIS IS WHY 
ARCHITECTURAL DECISION RECORDS ARE 
MAGICAL. 

THEY GIVE YOU THE WHY AND THE 
CONTEXT TO CHOICES, SO AS CONTEXT 
CHANGES YOU CAN RE-EVALUATE ... BUT 
ALSO UNDERSTAND)



Meri Williams, ChromeRose                 @Geek_Manager

WE DON’T ALL HAVE THE BENEFIT 
OF STARTING GREENFIELD



Meri Williams, ChromeRose                 @Geek_Manager

(IT’S NOT LEGACY 
IT’S VINTAGE)



Meri Williams, ChromeRose                 @Geek_Manager

THREE THINGS 
MATTER FOR 
DEVELOPER 
EXPERIENCE: 

- FEEDBACK 
LOOPS
- COGNITIVE 
LOAD
- FLOW STATE

https://dl.acm.org/doi/pdf/10.1145/3595878



Meri Williams, ChromeRose                 @Geek_Manager

THE WORST KIND OF TECH DEBT AFFECTS 
ALL THREE. 

IT’S UNTESTED  FEEDBACK LOOPS
IT’S COMPLEX OR COMPLICATED  
COGNITIVE LOAD
IT’S UNDOCUMENTED  FLOW STATE



Meri Williams, ChromeRose                 @Geek_Manager

AT PLEO, WE HAD A CASE LIKE THIS. 

THE VILLAIN OF THE STORY WAS DEIMOS, 
THE MONOLITH THAT IN MANY WAYS HAD 
MADE THE COMPANY SUCCEED IN THE 
EARLY DAYS (AFTER ALL, RUNNING CODE IS 
DELIVERING VALUE!) 



Meri Williams, ChromeRose                 @Geek_Manager

BUT DEIMOS WAS 

- DIFFICULT TO UNDERSTAND (”SPAGHETTI 
CODE”, POORLY STRUCTURED & 
DOCUMENTED)
- DIFFICULT TO SCALE (REACHING LIMITS)
- DIFFICULT TO CHANGE (CAUSING 
INCIDENTS)



Meri Williams, ChromeRose                 @Geek_Manager

WHEN I TOOK OVER AS CTO, 
THERE HAD ALREADY BEEN 2 
OR 3 FAILED ATTEMPTS TO KILL 
DEIMOS. 

WE REALLY REALLY NEEDED TO 
GET IT RIGHT THIS TIME.



Meri Williams, ChromeRose                 @Geek_Manager



Meri Williams, ChromeRose                 @Geek_Manager

WHAT TO DO? 

A HUGE REWRITE WAS APPEALING. 

BUT THEY ALWAYS TAKE TWICE AS LONG AS 
YOU WANT, AND CAN KILL COMPANIES. 



Meri Williams, ChromeRose                 @Geek_Manager

DEALING WITH TECH DEBT:

1) VISUALIZE THE PROBLEM
2) BENCHMARK VS INDUSTRY
3) EVANGELIZE & EXPLAIN
4) SECURE SOME AIR COVER
5) DELIVER, DELIVER, DELIVER!



Meri Williams, ChromeRose                 @Geek_Manager

1) VISUALIZE THE PROBLEM

WE USED DORA METRICS

OUR CYCLE TIME WAS 
5.6 DAYS! 



Meri Williams, ChromeRose                 @Geek_Manager

2) BENCHMARK VS INDUSTRY

THIS HELPED 
OUR EXEC AND 
BOARD TO 
UNDERSTAND 
THE PROBLEM 
CONCEPTUALLY



Meri Williams, ChromeRose                 @Geek_Manager

3) EVANGELIZE & EXPLAIN

WE TALKED WITH THE BROADER COMPANY 
ABOUT DEIMOS AND THE PROBLEMS IT 
WAS CAUSING. 

PRIMARILY IN INCIDENTS AND STOPPING US 
DELIVERING NEW CUSTOMER FEATURES.



Meri Williams, ChromeRose                 @Geek_Manager

4) SECURE SOME AIR COVER

I ASKED BOARD & EXEC TO ALLOW US 50% 
OF OUR TIME FIXING DEIMOS WHILST STILL 
DELIVERING NEW CUSTOMER FEATURES. 

(I ALSO TOLD THEM TO FIRE ME IN A YEAR IF 
I WAS STILL COMPLAINING ABOUT DEIMOS)



Meri Williams, ChromeRose                 @Geek_Manager

5) DELIVER, DELIVER, DELIVER

WE SET OUT AN API-FIRST STRATEGY AND 
DID A FULL PROGRAM OF TRAINING (WITH 
SKILLERWHALE) TO UPSKILL OUR 
ENGINEERS. 

THEN WE PULLED PIECES OUT OF DEIMOS 
INTO PROPER APIS.



Meri Williams, ChromeRose                 @Geek_Manager

5) DELIVER, DELIVER, DELIVER

API ALL THE 
THINGS! 



Meri Williams, ChromeRose                 @Geek_Manager



Meri Williams, ChromeRose                 @Geek_Manager



Meri Williams, ChromeRose                 @Geek_Manager

5) DELIVER, DELIVER, DELIVER

MOST IMPORTANTLY, WE DIDN’T GO HIDE IN 
A CORNER AND JUST DEAL WITH TECH DEBT. 

WE DELIVERED CUSTOMER VALUE ALL 
ALONG THE WAY INCLUDING SOME LONG-
AWAITED FEATURES DEIMOS WAS BLOCKING.



Meri Williams, ChromeRose                 @Geek_Manager

5) DELIVER, DELIVER, DELIVER



Meri Williams, ChromeRose                 @Geek_Manager

IT WOULD HAVE BEEN BETTER THOUGH IF 
THINGS HAD NEVER GOTTEN SO BAD THAT 
THIS MAJOR APPROACH WAS NEEDED. 

SO HOW DO WE TAME TECH DEBT ON A 
DAILY BASIS? 



Meri Williams, ChromeRose                 @Geek_Manager

IS TECH DEBT INEVITABLE?



Meri Williams, ChromeRose                 @Geek_Manager

I NEVER MEANT TO START A WAR,
I JUST WANTED YOU TO LET ME IN



Meri Williams, ChromeRose                 @Geek_Manager

THREE THINGS 
MATTER FOR 
DEVELOPER 
EXPERIENCE: 

- FEEDBACK 
LOOPS
- COGNITIVE 
LOAD
- FLOW STATE

https://dl.acm.org/doi/pdf/10.1145/3595878



Meri Williams, ChromeRose                 @Geek_Manager

FEEDBACK LOOPS: ADD TESTS WHERE THEY 
ARE MISSING

COGNITIVE LOAD: REFACTOR COMPLEX & 
COMPLICATED CODE (SEE CRAP MEASURE) 

FLOW STATE: ADD DOCUMENTATION



Meri Williams, ChromeRose                 @Geek_Manager

THE GREAT NEWS? 

DOING THESE THINGS HELPS YOU TO 
GRAPPLE WITH THE CODE AND DELIVER 
FASTER IN ANY CASE! 

START WITH TECH DEBT IMPROVEMENT



Meri Williams, ChromeRose                 @Geek_Manager

BUILD, REFACTOR, 
LET PLATFORMS EMERGE

https://medium.com/@postenterprise/the-abuse-of-reuse-96b2e0af01a7



Meri Williams, ChromeRose                 @Geek_Manager

PUT AN 
EXPIRY DATE 

ON ANY 
(NECESSARY) 
DIRTY HACKS



Meri Williams, ChromeRose                 @Geek_Manager

DON’T WAIT FOR PERMISSION TO 
IMPROVE THINGS

ADOPT “BOYSCOUT” RULE

BUILD IMPROVEMENT IN



Meri Williams, ChromeRose                 @Geek_Manager

http://xprogramming.com/articles/refactoring-not-on-the-backlog/



Meri Williams, ChromeRose                 @Geek_Manager

REFACTOR YOUR MONOLITH

START CONSUMING APIS 
INTERNALLY TOO

EAT YOUR OWN DOGFOOD



Meri Williams, ChromeRose                 @Geek_Manager



Meri Williams, ChromeRose                 @Geek_Manager



Meri Williams, ChromeRose                 @Geek_Manager

DEALING WITH TECH DEBT:

1) VISUALIZE THE PROBLEM
2) BENCHMARK VS INDUSTRY
3) EVANGELIZE & EXPLAIN
4) SECURE SOME AIR COVER
5) DELIVER, DELIVER, DELIVER!



Meri Williams, ChromeRose                 @Geek_Manager


	Slide 1: DEALING WITH TECH DEBT
	Slide 2
	Slide 3: What is Tech Debt?   Anything that makes Code…  1) Difficult to understand 2) Difficult to Scale 3) Difficult to Change   
	Slide 4
	Slide 5: WHY DOES TECH DEBT HAPPEN?  Same reason financial debt happens.   We need or want something now but can’t afford to pay for it.  
	Slide 6
	Slide 7: It’s not evil OR STUPID to borrow against the future.   However, it becomes a problem when interest payments get too large …   or we pay the mortgage on a credit card!   
	Slide 8
	Slide 9:   
	Slide 10: (AS an aside, this is why architectural decision records are magical.   They give you the WHY and the context to choices, so as context changes you can re-evaluate ... But also understand)  
	Slide 11: We don’t all have the benefit of starting greenfield
	Slide 12: (It’s not legacy  it’s vintage)
	Slide 13
	Slide 14: The worst kind of tech debt affects all three.   It’s untested  feedback loops It’s complex or complicated  cognitive load It’s undocumented  flow state  
	Slide 15: At Pleo, we had a case like this.   The villain of the story was Deimos, the monolith that in many ways had made the company succeed in the early days (after all, running code is delivering value!) 
	Slide 16: BUT deimos waS   - Difficult to understand (”spaghetti code”, poorly structured & documented) - Difficult to scale (reaching limits) - Difficult to change (causing incidents)
	Slide 17
	Slide 18
	Slide 19: What to do?   A HUGE rewrite was appealing.   But they always take twice as long as you want, and can kill companies. 
	Slide 20: Dealing with tech debt:  1) Visualize the problem 2) Benchmark vs industry 3) Evangelize & explain 4) Secure some air cover 5) Deliver, Deliver, Deliver!
	Slide 21: 1) Visualize the problem  we used DORA metrics  Our cycle time was  5.6 days! 
	Slide 22: 2) Benchmark vs industry
	Slide 23: 3) EVANGELIZE & EXPLAIN  We talked with the broader company about Deimos and the problems it was causing.   primarily in incidents and stopping us delivering new customer features.
	Slide 24: 4) Secure SOME air cover  I asked board & Exec to allow us 50% of our time fixing Deimos whilst still delivering new customer features.   (I also told them to fire me in a year if I was still complaining about Deimos)
	Slide 25: 5) Deliver, deliver, deliver  We set out an API-first strategy and did a full program of training (with Skillerwhale) to upskill our engineers.   Then we pulled pieces out of deimos into proper APIs.
	Slide 26: 5) Deliver, deliver, deliver  
	Slide 27
	Slide 28
	Slide 29: 5) Deliver, deliver, deliver  Most importantly, we didn’t go hide in a corner and just deal with tech debt.   We delivered customer value all along the way including some long-awaited features deimos was blocking.
	Slide 30: 5) Deliver, deliver, deliver  
	Slide 31: It would have been better though if things had never gotten so bad that this major approach was needed.   So how do we tame tech debt on a daily basis? 
	Slide 32
	Slide 33: I never meant TO START A WAR, I JUST WANTED YOU TO LET ME IN
	Slide 34
	Slide 35: Feedback Loops: Add tests where they are missing  Cognitive Load: refactor complex & complicated code (see CRAP measure)   FLOW state: Add documentatiON
	Slide 36: The great news?   Doing these things helps you to grapple with the code and deliver faster in any case!   Start with tech debt improvement
	Slide 37: Build, refactor,  let platforms emerge
	Slide 38: Put an expiry date on any (necessary) dirty hacks
	Slide 39: Don’t wait for permission to improve things  adopt “boyscout” rule  build improvement in
	Slide 40
	Slide 41: Refactor your monolith  start consuming APIs internally too  eat your own dogfood
	Slide 42
	Slide 43
	Slide 44: Dealing with tech debt:  1) Visualize the problem 2) Benchmark vs industry 3) Evangelize & explain 4) Secure some air cover 5) Deliver, Deliver, Deliver!
	Slide 45

