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WHAT IS TECH DEBT? 

ANYTHING THAT MAKES CODE…

1) DIFFICULT TO UNDERSTAND
2) DIFFICULT TO SCALE
3) DIFFICULT TO CHANGE 
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WHY DOES TECH DEBT HAPPEN?

SAME REASON FINANCIAL DEBT HAPPENS. 

WE NEED OR WANT SOMETHING NOW BUT 
CAN’T AFFORD TO PAY FOR IT.
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IT’S NOT EVIL OR STUPID TO BORROW 
AGAINST THE FUTURE. 

HOWEVER, IT BECOMES A PROBLEM WHEN 
INTEREST PAYMENTS GET TOO LARGE … 

OR WE PAY THE MORTGAGE ON A CREDIT 
CARD! 
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IT’S ALL JUST A 
MATTER OF 
PERSPECTIVE

DON’T ASSUME 
YOUR 
PREDECESSORS 
WERE STUPID!
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https://twitter.com/tomgauld/status/571994690289061888
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(AS AN ASIDE, THIS IS WHY 
ARCHITECTURAL DECISION RECORDS ARE 
MAGICAL. 

THEY GIVE YOU THE WHY AND THE 
CONTEXT TO CHOICES, SO AS CONTEXT 
CHANGES YOU CAN RE-EVALUATE ... BUT 
ALSO UNDERSTAND)



Meri Williams, ChromeRose                 @Geek_Manager

WE DON’T ALL HAVE THE BENEFIT 
OF STARTING GREENFIELD
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(IT’S NOT LEGACY 
IT’S VINTAGE)
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THREE THINGS 
MATTER FOR 
DEVELOPER 
EXPERIENCE: 

- FEEDBACK 
LOOPS
- COGNITIVE 
LOAD
- FLOW STATE

https://dl.acm.org/doi/pdf/10.1145/3595878
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THE WORST KIND OF TECH DEBT AFFECTS 
ALL THREE. 

IT’S UNTESTED  FEEDBACK LOOPS
IT’S COMPLEX OR COMPLICATED  
COGNITIVE LOAD
IT’S UNDOCUMENTED  FLOW STATE
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AT PLEO, WE HAD A CASE LIKE THIS. 

THE VILLAIN OF THE STORY WAS DEIMOS, 
THE MONOLITH THAT IN MANY WAYS HAD 
MADE THE COMPANY SUCCEED IN THE 
EARLY DAYS (AFTER ALL, RUNNING CODE IS 
DELIVERING VALUE!) 
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BUT DEIMOS WAS 

- DIFFICULT TO UNDERSTAND (”SPAGHETTI 
CODE”, POORLY STRUCTURED & 
DOCUMENTED)
- DIFFICULT TO SCALE (REACHING LIMITS)
- DIFFICULT TO CHANGE (CAUSING 
INCIDENTS)
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WHEN I TOOK OVER AS CTO, 
THERE HAD ALREADY BEEN 2 
OR 3 FAILED ATTEMPTS TO KILL 
DEIMOS. 

WE REALLY REALLY NEEDED TO 
GET IT RIGHT THIS TIME.
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WHAT TO DO? 

A HUGE REWRITE WAS APPEALING. 

BUT THEY ALWAYS TAKE TWICE AS LONG AS 
YOU WANT, AND CAN KILL COMPANIES. 
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DEALING WITH TECH DEBT:

1) VISUALIZE THE PROBLEM
2) BENCHMARK VS INDUSTRY
3) EVANGELIZE & EXPLAIN
4) SECURE SOME AIR COVER
5) DELIVER, DELIVER, DELIVER!
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1) VISUALIZE THE PROBLEM

WE USED DORA METRICS

OUR CYCLE TIME WAS 
5.6 DAYS! 



Meri Williams, ChromeRose                 @Geek_Manager

2) BENCHMARK VS INDUSTRY

THIS HELPED 
OUR EXEC AND 
BOARD TO 
UNDERSTAND 
THE PROBLEM 
CONCEPTUALLY
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3) EVANGELIZE & EXPLAIN

WE TALKED WITH THE BROADER COMPANY 
ABOUT DEIMOS AND THE PROBLEMS IT 
WAS CAUSING. 

PRIMARILY IN INCIDENTS AND STOPPING US 
DELIVERING NEW CUSTOMER FEATURES.
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4) SECURE SOME AIR COVER

I ASKED BOARD & EXEC TO ALLOW US 50% 
OF OUR TIME FIXING DEIMOS WHILST STILL 
DELIVERING NEW CUSTOMER FEATURES. 

(I ALSO TOLD THEM TO FIRE ME IN A YEAR IF 
I WAS STILL COMPLAINING ABOUT DEIMOS)
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5) DELIVER, DELIVER, DELIVER

WE SET OUT AN API-FIRST STRATEGY AND 
DID A FULL PROGRAM OF TRAINING (WITH 
SKILLERWHALE) TO UPSKILL OUR 
ENGINEERS. 

THEN WE PULLED PIECES OUT OF DEIMOS 
INTO PROPER APIS.
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5) DELIVER, DELIVER, DELIVER

API ALL THE 
THINGS! 
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5) DELIVER, DELIVER, DELIVER

MOST IMPORTANTLY, WE DIDN’T GO HIDE IN 
A CORNER AND JUST DEAL WITH TECH DEBT. 

WE DELIVERED CUSTOMER VALUE ALL 
ALONG THE WAY INCLUDING SOME LONG-
AWAITED FEATURES DEIMOS WAS BLOCKING.
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5) DELIVER, DELIVER, DELIVER
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IT WOULD HAVE BEEN BETTER THOUGH IF 
THINGS HAD NEVER GOTTEN SO BAD THAT 
THIS MAJOR APPROACH WAS NEEDED. 

SO HOW DO WE TAME TECH DEBT ON A 
DAILY BASIS? 
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IS TECH DEBT INEVITABLE?
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I NEVER MEANT TO START A WAR,
I JUST WANTED YOU TO LET ME IN
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THREE THINGS 
MATTER FOR 
DEVELOPER 
EXPERIENCE: 

- FEEDBACK 
LOOPS
- COGNITIVE 
LOAD
- FLOW STATE

https://dl.acm.org/doi/pdf/10.1145/3595878
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FEEDBACK LOOPS: ADD TESTS WHERE THEY 
ARE MISSING

COGNITIVE LOAD: REFACTOR COMPLEX & 
COMPLICATED CODE (SEE CRAP MEASURE) 

FLOW STATE: ADD DOCUMENTATION
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THE GREAT NEWS? 

DOING THESE THINGS HELPS YOU TO 
GRAPPLE WITH THE CODE AND DELIVER 
FASTER IN ANY CASE! 

START WITH TECH DEBT IMPROVEMENT
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BUILD, REFACTOR, 
LET PLATFORMS EMERGE

https://medium.com/@postenterprise/the-abuse-of-reuse-96b2e0af01a7
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PUT AN 
EXPIRY DATE 

ON ANY 
(NECESSARY) 
DIRTY HACKS
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DON’T WAIT FOR PERMISSION TO 
IMPROVE THINGS

ADOPT “BOYSCOUT” RULE

BUILD IMPROVEMENT IN
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http://xprogramming.com/articles/refactoring-not-on-the-backlog/
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REFACTOR YOUR MONOLITH

START CONSUMING APIS 
INTERNALLY TOO

EAT YOUR OWN DOGFOOD
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DEALING WITH TECH DEBT:

1) VISUALIZE THE PROBLEM
2) BENCHMARK VS INDUSTRY
3) EVANGELIZE & EXPLAIN
4) SECURE SOME AIR COVER
5) DELIVER, DELIVER, DELIVER!
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