
“Zero Waste”
Engineering
Practices

Suzanne Livingston
IBM Sustainability Software
Vice President Engineering

100+ Years
Investments in Research & Engineering

IBM’s Approach to Engineering

2

1880s Punchcards 1952 UPC Code 1969 Magnetic Stripe

1981 Laser Surgery1970s-80s Silicon Germanium
Chips & Floppy Disks

2019 Quantum

Today’s IBM (a sampling)

33

SPSS AnalyticsMaximo

QRadar

WebSphere

System Z Watson

Red Hat

‣“We can’t build a Tesla on a

Model-T production line.”

--SVP IBM Software

Chapter 1

Clarity on what we are building

5

‣1

‣ Product alignment

• What are the top things we

should be building?

‣2

‣ Backlog transparency

• What is each squad working

on right now and next?

‣3

‣ Clarifying requirements

• Stakeholder expectation vs

developer reality

‣4

‣ Discipline in our practices

• Reviewed?

• Automated?

• Tested?

• Accepted?

ALIGNMENT

Product
management Design

Engineering

Viability Usability

Value

Feasibility

7

CLARIFY
REQUIREMENTS

Epic ownership
• Joint ownership – PM, Dev, Design
•Understanding requirement
• Create technical design and docs
•Write and refine stories
• Form story acceptance criteria

Formally define
•Definition of ready
•Definition of done
• Roles & Responsibilities as a developer
• Roles & Responsibilities as a reviewer
•Quality, security & automation included

8

What did we learn?
• Improved estimates in story points
• Backlog refinement helped the whole

team to understand the coming work

What do we need to improve?
• Story writing needed improvement
• Epic refinement enabled us to see the

gaps
• Average number of tickets created is

higher than previous sprint, as an
indicator of quality

Retrospect ives &
Cont inuous Improvement

Started

Why do this

Chapter 2
Automation

‣10%

‣Decrease in

keep-the-lights-

on activities

‣50%

‣Development

time savings

from automation

‣80%

‣Fewer security

vulnerabilities

with security

automation

10

Automation from scratch

Build, unit
test

Team
pipelines

Integration
pipelines

Release
candidate
pipeline

Release
pipeline

Build common framework
Feature unit test framework
Team’s own build with unit test process

Typically, Jenkins
driven, integration at
app or team level

Smallest footprint, fast turn around,
most shift left and economical

Smaller footprint, application functional
specific environmental variations can be

more economically covered here

System level integration, large footprint, longer
turn around, cover system integration

variations

Final system validation for release and release
process automation

Less p
ro

b
lem

s

Sh
if

t
le

ft

Tekton pipelines and
travis, pipelines

Tekton pipelines and
travis

Tekton pipelines and
travis, long running
and more

Automation Payoff

0

5

10

15

20

25

30

35

40

45

50

Apr May Jun Jul Aug

BugCat: Unexpected environmental issue

BugCat: Test automation

BugCat: Pipeline/devops/cli and test container

BugCat: Incorrectly reported or no action

BugCat: Application

Total bugs 200, Application bugs: 94

13

Mindset shift - A feature is not just code
• Understand the big picture - persona, usage

scenarios
• Ask questions of how what we are building is serving

the consumer/stakeholder/user

Development practice shift
• Test driven development
• Functional and technical design at every level
• Dev and test being one
• Squads oversee writing their own tests and

deployment out to production

Smaller changes produce higher quality
• Reviewers/Committers refuse large PRs
• Shift as much of the security/compliance as left as

possible i.e. Scan and report compliance on every PR
& Merge build

CONTINUOUS
ENGINEERING

No time to
automation test
with the feature

or bug fixes

Lower quality
resulted into
more time on

bugs and
customer support

More distractions from
development work,
over estimated dev

plan

Being pressed by
release date

Chapter 3

Visibility

14

How much time is being spent on

what types of stories in each

development cycle

Field feedback 4%

Technical Debt 5%

Support 5%

Development Process

31%

New Feature Development

55%

Chapter 3

Visibility

15

‣1

‣ Planned <= Completed

creates a healthier work

environment

‣2

‣ Smaller, well-defined stories

completed on time

‣3

‣ Team velocity improved &

new members ramping up

faster

‣4

‣ Teams reviewing average

velocity as part of sprint

planning

16

• Demos of key changes

• How did our estimations hold up? If we were off,
what got in our way? Could we have prevented
distractions?

• What areas of concern or potential problem
areas are being identified?

• What can we do better/differently to improve?

• What best practices have we used for areas that
we're doing well in?

END-OF-SPRINT
REVIEW

Chapter 4

Operations

17

‣80%

‣ Average amount unused in

overallocated infrastructure for

seasonality

/IBM-engineering-for-sustainability

In Summary

Alignment VisibilityAutomation

Avg Issue dropped
25 to 5 days

Predictability improved
1 Month+ to 1 Sprint

50% time back to invest

10% fewer KTLO activities

80% security improvement

Estimation improvement

Transparent communication

Efficient prioritization

Continuously hunt & reduce waste

