
Alice Bartlett - Staff Plus, London, June 2023

The Journey of a Byline

I’m Alice Bartlett

I’ve worked at the Financial Times for
20% of my life

I’m a Principal Engineer in the team that
looks after FT.com and our Apps

The Financial
Times is the world’s

leading paper on
business and

economic news

Disclaimer about how much I love my colleagues

In this talk we’re going to look at a
system, and that system was written by
people. This talk is not a criticism of the
decisions made by those people. They
all made sensible decisions based on the
information available at the time.
However all systems tend towards
entropy so this talk is about how we tidy
up that system.

In this talk we will cover

1. The journey of a byline, including a tiny bug

2. What we did to make that journey smoother

3. Some practical tips to help you with your own
architectural challenges

PART 1: THE
JOURNEY OF A
BYLINE

You can read an FT article in many places…

FT.com FT App FT Edit E-paper Apple news*

Our main character

Oscar O’Reilly
Fictional Financial
Times Journalist

What is a byline?

A line of text that tells
you who had a significant
role in creating the
article.

What is a byline?

Link to author page

Examples of bylines

Martin Wolf

Lionel Barber and Guy Chazan in Berlin

George Parker, Chris Giles and Ian Smith in London and
Sebastian Payne in Bali

Cornelia Lauf. Photography by Marina Denisova

Miranda Green is the FT’s deputy opinion editor. Robert
Shrimsley is away

THIS IS SPARK, OUR CMS

THIS IS WHERE WE
TYPE THE BYLINE

What is a byline?

Link to author page

What is a byline?

Bylines are typed by hand into the
Financial Times CMS (called Spark)

The Destination

FT.com

FT App

Lets take a closer look at these two…

FT.com

FT App

Lets take a closer look at these two…

FT.com
This is hyperlinked

FT App
This one isn’t

Lets take a closer look at these two…

This is a bug!

There is something else
though, can you spot it?

There is something else
though, can you spot it?

Sometimes we render this as a curly glyph…

Hi!

But sometimes… it’s this guy

Greetings.

Let’s talk about curly quotes

“Hello”

‘Oh yay’

"Hell no"

'No way'

Deep dive: curly quotes

Straight quotes come from
typewriters.

In printing however you have
more quotes to mess about
with, and straight quotes are
only used rarely.

Most OS’s will replace a
straight quote with a curly
one.

Is one of
these

technically
correct?

BEYONCÉ

O’RIELLY
VS

O'RIELLY

WHY IS THIS
HAPPENING?

What is happening

Although these are both
HTML and CSS the code

to render them is
different

What is happening

And there is a bug in one
version, and not in the

other

Video?

So we are repeating work

The Article page normalises all of the
apostrophes to be curly

The App API incorrectly assumes the
byline will always have curly quotes and
only normalises the meta data quote

The destination

FT.com

FT App

Isn’t this all a
bit… minor?

The main problem isn’t the bug

The main problem is that we are repeating
work that we don’t need to.

The bug illustrates this because if we
weren’t repeating the work, then we would
see the bug on FT.com and the App.

We have six content types

📰 Articles

🔊 Audio

📹 Video

📦 Packages

👩💻 Live Blog

👩💻📦 Live Blog Packages

… and they all have content features within them

📰 Articles

🔊 Audio

📹 Video

📦 Packages

👩💻 Live Blog

👩💻📦 Live Blog Packages
👩💻 Bylines

🏷 Tags (eg , etc)

🔗 Links

🖼 Images

🔝Toppers (headers)

🍽 Tables

📜 Scrolly-telling

📹 Video

🗣 Pull quote

…etc…

📰 Articles

🔊 Audio

📹 Video

📦 Packages

👩💻 Live Blog

👩💻📦 Live Blog Packages
👩💻 Bylines

🏷 Tags (eg , etc)

🔗 Links

🖼 Images

🔝Toppers (headers)

🍽 Tables

📜 Scrolly-telling

📹 Video

🗣 Pull quote

…etc…

… and they all have content features within them

And they all have to be rendered in different places

FT.com

FT App

FT Edit

E-paper

📰 Articles

🔊 Audio

📹 Video

📦 Packages

👩💻 Live Blog

👩💻📦 Live Blog Packages
👩💻 Bylines

🏷 Tags (eg , etc)

🔗 Links

🖼 Images

🔝Toppers (headers)

🍽 Tables

📜 Scrolly-telling

📹 Video

🗣 Pull quote

…etc…

MVP (Minumum Viable Problem) Demo

Curly quotes are the tip of the
iceberg. We have these kinds of
violations all over the place in
our article rendering pipeline

MVP (Minumum Viable Problem) Demo

And it’s because this system has grown over time,
people have jammed new bits in where they thought
they should go and it’s all gotten a bit… messy.

So, we have a system that has
grown over time and gotten a bit
unwieldy. What did we do about

it?

PART 2: WHAT
WE DID TO
IMPROVE THIS

We formed a temporary team

Formed a small team of people with deep
knowledge of our existing rendering code and a
desire to improve it!

Gave them six months and a fairly open brief:

Simplify the way we render our content, make it
easier to add new products to and maintain.

We started by trying to understand the system

MYSTERY???

tippy-tappy
**consuming award

winning journalism**

And all of it has stuff within it

📰 Articles

🔊 Audio

📹 Video

📦 Packages

👩💻 Live Blog

👩💻📦 Live Blog Packages

👩💻 Bylines

🏷 Tags (eg , etc)

🔗 Links

🖼 Images

🔝Toppers (headers)

🍽 Tables

📜 Scrolly-telling

📹 Video

🗣 Pull quote

👨💻 Headshots

…etc…

We started by trying to understand the system

THIS IS A LOT OF WORK

We started by trying to understand the system

Eventually a pattern
emerged

We arrived at some principles

1. Transforming
2. Augmenting
3. Rendering

We arrived at some principles

1. Transformations in one place
2. Augmentations in one place
3. Rendering in one place

We arrived at some principles

Instead of normalising (or not!) Oscar O’Reilly’s
apostrophe in every front-end that renders the byline,
we’re going to fix that in a single place upstream.

- Jennifer Aniston

“Here comes
the science”

We built four things

1. A schema for describing content types

We built four things

1. A schema for describing content types

2. A new API for content

We built four things

1. A schema for describing content types

2. A new API for content

3. A helper library for querying the API

We built four things

1. A schema for describing content types

2. A new API for content

3. A helper library for querying the API

4.A new library for rendering content

Our three layers

1. Transforming
2. Augmenting
3. Rendering

Reads an article
via the website

or one of our
apps

Content &
Metadata

Manages the content
and associated

metadata and makes it
available via APIs

FT article
page

FT App FT App API

Elastic Search

[Other front ends not shown]
• Apple news
• AMP
• FT Edit

Requests content by UUID

Requests
content by
UUID

Requests
content by
UUID

Requests content by UUID

FT.com and apps

Reads an article
via the website

or one of our
apps

Content &
Metadata

Manages the content
and associated

metadata and makes it
available via APIs

FT article
page

FT App FT App API

Elastic Search

[Other front ends not shown]
• Apple news
• AMP
• FT Edit

Requests content by UUID

Requests
content by
UUID

Requests
content by
UUID

Requests content by UUID

TRANSFORMING
FT.com and apps

Reads an article
via the website

or one of our
apps

Content &
Metadata

Manages the content
and associated

metadata and makes it
available via APIs

FT.com and apps

FT article
page

FT App FT App API

Elastic Search

[Other front ends not shown]
• Apple news
• AMP
• FT Edit

Requests content by UUID

Requests
content by
UUID

Requests
content by
UUID

Requests content by UUID

AUGMENTING

Reads an article
via the website

or one of our
apps

Content &
Metadata

Manages the content
and associated

metadata and makes it
available via APIs

FT.com and apps

FT article
page

FT App FT App API

Elastic Search

[Other front ends not shown]
• Apple news
• AMP
• FT Edit

Requests content by UUID

Requests
content by
UUID

Requests
content by
UUID

Requests content by UUID

RENDERING
FT.com and apps

Reads an article
via the website

or one of our
apps

Content &
Metadata

Manages the content
and associated

metadata and makes it
available via APIs

FT.com and apps

FT article
page

FT App FT App API

Elastic Search

[Other front ends not shown]
• Apple news
• AMP
• FT Edit

Requests content by UUID

Requests
content by
UUID

Requests
content by
UUID

Requests content by UUID

Reads an article
via the website

or one of our
apps

Content &
Metadata

Manages the content
and associated

metadata and makes it
available via APIs

FT.com and apps

FT App API

Apollo
GraphQL

Server

[Other front ends not shown]
• Apple news
• AMP
• FT Edit

Requests content by UUID

Requests
content by
UUID

Requests
content by
UUID

Requests content by UUID

UI
Library

GraphQL
Client

UI
Library

GraphQL
Client

FT article page

FT App

TRANSFORMING

Reads an article
via the website

or one of our
apps

Content &
Metadata

Manages the content
and associated

metadata and makes it
available via APIs

FT.com and apps

FT App API

Apollo
GraphQL

Server

[Other front ends not shown]
• Apple news
• AMP
• FT Edit

Requests content by UUID

Requests
content by
UUID

Requests
content by
UUID

Requests content by UUID

UI
Library

GraphQL
Client

UI
Library

GraphQL
Client

FT article page

FT App

AUGMENTING

Reads an article
via the website

or one of our
apps

Content &
Metadata

Manages the content
and associated

metadata and makes it
available via APIs

FT.com and apps

FT App API

Apollo
GraphQL

Server

[Other front ends not shown]
• Apple news
• AMP
• FT Edit

Requests content by UUID

Requests
content by
UUID

Requests
content by
UUID

Requests content by UUID

UI
Library

GraphQL
Client

UI
Library

GraphQL
Client

FT article page

FT App

RENDERING

Reads an article
via the website

or one of our
apps

Content &
Metadata

Manages the content
and associated

metadata and makes it
available via APIs

FT.com and apps

FT App API

Apollo
GraphQL

Server

[Other front ends not shown]
• Apple news
• AMP
• FT Edit

Requests content by UUID

Requests
content by
UUID

Requests
content by
UUID

Requests content by UUID

UI
Library

GraphQL
Client

UI
Library

GraphQL
Client

FT article page

FT App

FT.com and apps

We reintroduced this
bug for everyone

Reads an article
via the website

or one of our
apps

Content &
Metadata

Manages the content
and associated

metadata and makes it
available via APIs

FT.com and apps

FT article
page

FT App FT App API

Elastic Search

[Other front ends not shown]
• Apple news
• AMP
• FT Edit

Requests content by UUID

Requests
content by
UUID

Requests
content by
UUID

Requests content by UUID

FT.com and apps

But we were able to
fix it in a single place

Reads an article
via the website

or one of our
apps

Content &
Metadata

Manages the content
and associated

metadata and makes it
available via APIs

FT.com and apps

FT App API

Apollo
GraphQL

Server

[Other front ends not shown]
• Apple news
• AMP
• FT Edit

Requests content by UUID

Requests
content by
UUID

Requests
content by
UUID

Requests content by UUID

UI
Library

GraphQL
Client

UI
Library

GraphQL
Client

FT article page

FT App

PART 3: SOME
PRACTICAL TIPS

How did we do this

Formed a small team of people with deep
knowledge of our existing rendering code and a
desire to improve it!

Gave them six months and a fairly open brief:

Simplify the way we render our content, make it
easier to add new products to and maintain.

Ask for what you need and be
prepared to negotiate, or drop

the initiative, if you aren’t able to
get it.

Give people a problem to
solve, not a solution to

implement

Comms comms
comms

Tanya Reilly - The Staff Engineer's Path

Who are we trying to communicate with?

• Other engineers that will be using this

• Product, design, delivery, research

• Upstream teams (Spark and Content and
metadata)

• Our future selves

A book about
communicating ideas

by Giles Turnbull

The Agile Comms
Handbook

Giles Turnbull

How to clearly, creatively work in the open

A book about
communicating ideas

by Giles Turnbull

The layer cake of comms

The lure —a tweet length summary of what is going on

The context — a blog post, an email, a little video.
Tell people enough, but not so much that they
don’t have time to read it all

The detail — stuff only people elbow deep are going
to care about - the tables, the architecture diagrams,
the decision docs

The layer cake of comms

The context - this is the hard bit - it’s not the
usual engineering work (that’s the detail layer)

Our Lure

“We’ve simplified the way we
render our content, making it
easier to add new products to
and maintain.”

Weeknotes for the context layer

“Irreverent,
short, with
pictures”

Little videos for the context layer

The value of an architecture
diagram is partly in the
actual act of drawing it

Decision docs in the detail layer

Document WHY as much as
possible. Why typescript?
Why HAST? Why a
monorepo? Why GraphQL?
Why CommonJS? Etc

Blog posts in the detail layer

Get the team to blog things
they are learning as they go

— Our CPO

“if all teams [communicated] as API
rationalisation did … that’s the goal”

SUMMARY

1. Little things can tell us big things about our systems

SUMMARY

1. Little things can tell us big things about our systems

2. To fix the big things, you need a team who isn’t
looking at anything else

SUMMARY

1. Little things can tell us big things about our systems

2. To fix the big things, you need a team who isn’t
looking at anything else

3. As a staff plus engineer effective comms is part of
your job

https://medium.com/ft-product-technology/unspaghettiing-ft-coms-content-pipeline-be1421a434cb

Read the original apostrophe article here

bit.ly/staff-plus-apostrophes

People who had a significant role in this work

Alice Bartlett, Rowan Manning, Kara Brightwell, Arjun Gadhia, Ashoor Namrood, Chee Rabbits,
Rowan Beentje, Charlotte Payne and Malcolm Moore in London, Maggie Allen in Bangor, Dimitar
Terziev in Sofia, and Nayana Shetty and Nick Ramsbottom in absentia

