
Getting Serious
about

Security

NYC LeadDev 2023

Eleanor Saitta
Systems Structure Ltd.

Part One: Thinking

Systems exist to do things in the world

To be useful, they need to have certain emergent
properties

Whole-system properties which occur in a specific
context

Require unified effort to deliver

What is a System?

• Correctness

• Performance

• Efficiency

• Reliability

• Observability

• Security

• Resilience

Properties you care about:

A secure system is one that:

• Enables a chosen set of people to predictably
accomplish specific goals

• Does so in the face of actions by a chosen set
of adversaries

• Predictably prevents that chosen set of
adversaries from

What is Security?

The ability of a system to deal with unforeseen
modes of failure without complete failure

Resilience is a property of humans, not code

What is Resilience?

Designing both processes and technical systems
in accordance with specific principles leads to
desired emergent properties

Properties of technical artifacts vs. properties of
human processes

Designing for Resilient Security

A few useful system design principles:

• Statelessness/Logiclessness

• Immutability and Ephemerality

• Canonical Stores

Component Principles

Services should either do computation or hold
state, not both

Complex components are unpredictable

State and Logic

Data, configuration, and memory are all state

Immutable systems eliminate unnecessary state

Respinning a cluster resets state

Immutability and Ephemerality

Every piece of state should exist canonically in
exactly one place

As few systems as possible should be stores of
state

Any duplicated state must be validated

Minimal, Canonical State

And a few for the human side of the org:

• Declare and Generate

• Design for Failure

• Decide at the Edge

• Slack

Process Principles

Declarative configurations are easier for both
humans and computers to create, compose, and
validate

Use memory safe languages, parser generators,
strongly typed languages, and state machine
generators

Declare, don’t Program

Mitigations Always Fail

Kill Bug Classes
Security engineering changes
that don’t involve killing bug
classes are emergency response
work

…unless those changes kill
traversal instead

Make a plan for each class and
layer in advance and crosscheck

Failure and compromise are inevitable

Design components and systems to handle both
predictable and unpredictable types of failures

Think about security controls as a whole, assuming
that some layers will always fail

Build the system you’d like to have during a
compromise or outage

Design for Failure

Empower teams and engineers to work
autonomously, so decisions can happen where
people have full context

Focus on coordination and communication over
control

Ensure teams have thick horizontal relationships
outside of formal processes

Decentralize Decisionmaking

Resilience requires teams to have downtime

Improving any emergent property takes more
time than the bare minimum

Apply hard caps to feature velocity, ensure
people take vacations, have large on-call
rotations, and track out of hours work

Slack

Part Two: Doing

For your product:

• Think about risks for users and the company early

• Make smart language and framework choices

• Let someone else do hard stuff like auth

• Pay attention to where data goes — maximal
privacy is cheaper

Make sure it’s a real product before going further

When to Start

For your company:

• Make it real first

• Not pre-A or before 10 technical staff

• Do start pre-B

• Keep SaaS systems simple until you start

When to Start

1. Hire at least one each ops and IT engineer

2. Make sure you have for-real tested backups

3. Easy SaaS tools on SSO; Yubikeys for 2FA

4. Get rid of your Office and Windows footprint

5. Laptop fleet management (e.g. Jamf)

6. Thinkst Canaries in your VPCs/network

7. Basic log centralization

Seven Immediate Actions

• If the C[EFOT]O isn’t on board it won’t work

• Someone has to own security

• Not the CTO; ideally a peer

• Probably fractional for the first 3 years

• Finish your vegetables

• Think about your incentives

• Qualitative metrics, not quantitative

Governance

• You need to log a lot of stuff somewhere

• It will cost money

• You need someone to look at the logs

• Hiring them will cost even more; outsource

• If your product means you have to deal with
non-credit card fraud, that’s a core
competency

Detection

• You spend lines of code to buy features

• Every line of code is an ongoing cost

• Is your feature worth it?

• Tools that let humans write less code are good

• Every tool and library is also an ongoing cost

• Velocity averages out; technical debt is drag

• Most security debt is dark

Code is Not an Asset

• You probably don’t know what JS runs on your site

• Advertising = Malware

• Post-spectre web — CSPs, CORP/COOP/CORB

• Backend integrations are easier to control

• Beware GraphQL

The Front End

• You also don’t know what runs on your backend

• Need to be able to reproduce point in time

• Let someone else figure out a library was
backdoored first

• Artifact management with configuration in git and
logged deploys

The Supply Chain

• Red team reviews are for testing incident response if
you already understand your environment

• Full access “grey box” testing with source and prod-
like access

• Early test on an MVP once you frameworks are set

• Retest high-risk components or new approaches

Audits

• You get to design your attacker’s motivation level
and the problems they have to solve

• Spend as much time designing unhappy paths as
happy ones

• Know where each automated business or security
decision in your flows

• Document this before each sprint and check it after

Product Security

You are responsible for the impact of your work
on people’s lives.

• A domestic violence victim seeking an
abortion

• A queer teen

• A union organizer

Personas to Examine

ella@structures.systems

Startup looking to get
serious about security?

Let’s talk.

Eleanor Saitta
Systems Structure Ltd.

	Getting Serious�about�Security
	Part One: Thinking
	What is a System?
	Properties you care about:
	What is Security?
	What is Resilience?
	Designing for Resilient Security
	Component Principles
	State and Logic
	Immutability and Ephemerality
	Minimal, Canonical State
	Process Principles
	Declare, don’t Program
	Mitigations Always Fail
	Kill Bug Classes
	Design for Failure
	Decentralize Decisionmaking
	Slack
	Part Two: Doing
	When to Start
	When to Start
	Seven Immediate Actions
	Governance
	Detection
	Code is Not an Asset
	The Front End
	The Supply Chain
	Audits
	Product Security
	Slide Number 30
	Personas to Examine
	Slide Number 32

