
Wrangling Kubernetes
into a developer friendly

cloud platform

Borko Djurkovic
Software Engineer @ Render

@borkod



@borkod



Why Platforms? Why Now?

2000

Monolith

Monolith architectures

Bare metal / On-premises infra

Waterfall

SOA

Monolith + SOA Architectures

Popularity of ESB’s

On-premises / colo / cloud infra

2005

2010

Cloud

Monolith application architecture

Increased popularity of cloud

Heroku / CloudFoundry
2015

Microservices

High adoption of microservices and 
cloud architectures

Advancement of containerized 
applications

2020

Cloud Native

Rise of Kubernetes

DevOps

Shift Left

SOAP

COGNITIVE LOAD

@borkod



Why Platforms? Why Now?

Kubernetes became defacto standard for container 
orchestration

Kubernetes API → 56 resources (kubeadm install)

Deployment → 1066 fields

CNCF Projects → 139 projects

Controller 
Manager

Kubernetes
API Server

Kube
Proxy ETCD Scheduler

Kubelet

DNS CNI

Core

Networking

Security

Authentication

Observability

Storage

Ingress

Cluster
Health

@borkod



@borkod



Wrangling Kubernetes

● Feature Abstractions

● Hide Complexity / Provide Safe Default

● Leverage CNCF Projects

● Extend Kubernetes

@borkod



Create Feature Abstractions

@borkod



Abstract Complexity / Provide Safe Defaults

“One of the key principles of any developer platform 
is that it should be easy to do the right things, 
and hard to do the wrong things.” - Charity Majors

https://www.honeycomb.io/blog/future-ops-platform-engineering

● Namespaces provide logical segregation
● Network policies provide network isolation
● Set resource requests and limits
● Set security context / Disable privileged 

containers / Limit Capabilities
● Runtime security
● Provide logging and observability
● Use Horizontal Pod Autoscaler
● Use Cluster Autoscaler
● Manage Volumes and Storage 

https://www.toddmclellan.com/thingscomeapart@borkod

https://www.honeycomb.io/blog/future-ops-platform-engineering
https://www.toddmclellan.com/thingscomeapart


Extending Kubernetes

Leverage CNCF projects to extend 
Kubernetes with additional functionality

Prometheus

Grafana

Cert Manager

@borkod



Extending Kubernetes

Kubernetes controllers:

● Controller can watch one or more objects

● Controller will constantly compare the desired state with the 
current state

● Reconciliation loop ensures that the objects get transitioned to the 
desired state (Implements functions to handle 
ADD/DELETE/UPDATE)

● Desired state is encapsulated in one or more Kubernetes custom 
resources

Custom Resource Definitions (CRD):

● Extension of the the default Kubernetes API with your 
own abstractions (e.g. MyAwesomeApp)

● Defines how such an object looks like (which fields 
exist and how the CRD is named)

● Stores desired state of the resource (e.g. 
MyAwesomeApp)

● Used by your controller to retrieve resource 
configuration and do something

@borkod



Platforms as a Product

Platform engineering uses product management to 
build the platform.

Developers are the customer.

Platform engineering focuses on marketing, 
advocacy, and driving usage for the platform.

“...your application developers shouldn’t be 
concerned with setting up, running, and maintaining 
any of that: they’ll just use that stuff so they can 
write their apps, move pixels on the screen, not 
containers in the cloud.” - Michael Coté

https://buttondown.email/cote/archive/what-is-platform-engineering-i-think-maybe/

@borkod

https://buttondown.email/cote/archive/what-is-platform-engineering-i-think-maybe/


Speaker Office Hours: 15:50-16:20

Twitter: @borkod

E-Mail: borko@render.com

www.render.com

@borkod

mailto:borko@render.com
http://www.render.com

